Tantalum electrodeposition using a nanoporous anodic alumina template and a nanostructured gold/nickel-chromium glass-ceramic substrate

Loading...
Thumbnail Image

Authors

Šimůnková, Helena
Kolíbalová, Eva
Kalina, Lukáš
Lednický, Tomáš
Bábor, Petr
Hubálek, Jaromír

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
Altmetrics

Abstract

The electrodeposition and analysis of tantalum (Ta) nanotube arrays prepared from an ionic liquid, 1-butyl-1methylpyrrolidinium bis(trifluoro-methylsulfonyl) imide (BMP[Tf2N]), using a porous anodic alumina (PAA) template are newly presented. Free-standing and spatially separated tantalum nanotube arrays were achieved after selective etching of the PAA. The high-rate electrodeposition of the nanotube arrays took only 10 s and achieved approximately 70 atomic percent Ta metal. Superficial X-ray photoelectron spectroscopy supplemented by an argon ion etching and depth profiling has proven the presence of tantalum metal. Additionally, tantalum electrodeposition was attempted using a sputter-deposited gold coating on a planar glass-ceramic substrate as the working electrode. Pores emerged within the sputter-deposited gold layer as a side result of the Ta electrodeposition step. Nano-to submicrometer large pores were created due to a foreign element penetration into the gold and etching effect of fluorides contained in the ionic liquid solution.
The electrodeposition and analysis of tantalum (Ta) nanotube arrays prepared from an ionic liquid, 1-butyl-1methylpyrrolidinium bis(trifluoro-methylsulfonyl) imide (BMP[Tf2N]), using a porous anodic alumina (PAA) template are newly presented. Free-standing and spatially separated tantalum nanotube arrays were achieved after selective etching of the PAA. The high-rate electrodeposition of the nanotube arrays took only 10 s and achieved approximately 70 atomic percent Ta metal. Superficial X-ray photoelectron spectroscopy supplemented by an argon ion etching and depth profiling has proven the presence of tantalum metal. Additionally, tantalum electrodeposition was attempted using a sputter-deposited gold coating on a planar glass-ceramic substrate as the working electrode. Pores emerged within the sputter-deposited gold layer as a side result of the Ta electrodeposition step. Nano-to submicrometer large pores were created due to a foreign element penetration into the gold and etching effect of fluorides contained in the ionic liquid solution.

Description

Citation

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

2027-05-21

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO