The planar anodic Al2O3-ZrO2 nanocomposite capacitor dielectrics for advanced passive device integration

Loading...
Thumbnail Image

Authors

Kamnev, Kirill
Pytlíček, Zdeněk
Bendová, Mária
Prášek, Jan
Gispert-Guirado, Francesc
Llobet, Eduard
Mozalev, Alexander

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Altmetrics

Abstract

The need for integrated passive devices (IPDs) emerges from the increasing consumer demand for electronic product miniaturization. Metal-insulator-metal (MIM) capacitors are vital components of IPD systems. Developing new materials and technologies is essential for advancing capacitor characteristics and co-integrating with other electronic passives. Here we present an innovative electrochemical technology joined with the sputter-deposition of Al and Zr layers to synthesize novel planar nanocomposite metal-oxide dielectrics consisting of ZrO2 nanorods self-embedded into the nanoporous Al2O3 matrix such that its pores are entirely filled with zirconium oxide. The technology is utilized in MIM capacitors characterized by modern surface and interface analysis techniques and electrical measurements. In the 95-480 nm thickness range, the best-achieved MIM device characteristics are the one-layer capacitance density of 112 nF center dot cm(-2), the loss tangent of 4 center dot 10(-3) at frequencies up to 1 MHz, the leakage current density of 40 pA center dot cm(-2), the breakdown field strength of up to 10 MV center dot cm(-1), the energy density of 100 J center dot cm(-3), the quadratic voltage coefficient of capacitance of 4 ppm center dot V-2, and the temperature coefficient of capacitance of 480 ppm center dot K-1 at 293-423 K at 1 MHz. The outstanding performance, stability, and tunable capacitors' characteristics allow for their application in low-pass filters, coupling/decoupling/bypass circuits, RC oscillators, energy-storage devices, ultrafast charge/discharge units, or high-precision analog-to-digital converters. The capacitor technology based on the non-porous planar anodic-oxide dielectrics complements the electrochemical conception of IPDs that combined, until now, the anodized aluminum interconnection, microresistors, and microinductors, all co-related in one system for use in portable electronic devices.
The need for integrated passive devices (IPDs) emerges from the increasing consumer demand for electronic product miniaturization. Metal-insulator-metal (MIM) capacitors are vital components of IPD systems. Developing new materials and technologies is essential for advancing capacitor characteristics and co-integrating with other electronic passives. Here we present an innovative electrochemical technology joined with the sputter-deposition of Al and Zr layers to synthesize novel planar nanocomposite metal-oxide dielectrics consisting of ZrO2 nanorods self-embedded into the nanoporous Al2O3 matrix such that its pores are entirely filled with zirconium oxide. The technology is utilized in MIM capacitors characterized by modern surface and interface analysis techniques and electrical measurements. In the 95-480 nm thickness range, the best-achieved MIM device characteristics are the one-layer capacitance density of 112 nF center dot cm(-2), the loss tangent of 4 center dot 10(-3) at frequencies up to 1 MHz, the leakage current density of 40 pA center dot cm(-2), the breakdown field strength of up to 10 MV center dot cm(-1), the energy density of 100 J center dot cm(-3), the quadratic voltage coefficient of capacitance of 4 ppm center dot V-2, and the temperature coefficient of capacitance of 480 ppm center dot K-1 at 293-423 K at 1 MHz. The outstanding performance, stability, and tunable capacitors' characteristics allow for their application in low-pass filters, coupling/decoupling/bypass circuits, RC oscillators, energy-storage devices, ultrafast charge/discharge units, or high-precision analog-to-digital converters. The capacitor technology based on the non-porous planar anodic-oxide dielectrics complements the electrochemical conception of IPDs that combined, until now, the anodized aluminum interconnection, microresistors, and microinductors, all co-related in one system for use in portable electronic devices.

Description

Citation

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS. 2023, vol. 24, issue 1, p. 1-17.
https://www.tandfonline.com/doi/full/10.1080/14686996.2022.2162324

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 4.0 International
Citace PRO