Effect of powder milling on sintering behavior and monotonic and cyclic mechanical properties of Mo and Mo-Si lattices produced by direct ink writing

Molybdenum is a refractory metal regarded as a promising basis for producing high-temperature components. However, the potential of manufacturing molybdenum-based structures by direct ink writing (DIW) has not been explored. In this study, three-dimensional porous molybdenum (Mo) and molybdenum-silicon (Mo-Si) composite lattices were fabricated using DIW with non-milled and milled powders. The effects of Mo powder morphology (resulting from milling) and chemical composition (alloying Mo with 3 and 10 wt% of Si) on the microstructure, phase composition, and static and cyclic compression properties at room temperature were investigated. Lattices fabricated from commercial spherical Mo powder exhibited the highest intra-filament porosity. Conversely, lattices fabricated from milled Mo powder were denser and had higher compressive strength, offset stress, and quasi-elastic gradient. Alloying Mo with Si during sintering resulted in composite lattices with Mo thorn Mo3Si microstructure. A low content of Mo3Si slightly decreased monotonic compression properties but did not affect the cyclic compression response compared to Mo lattices made from milled powder. In contrast, a high content of Mo3Si produced quasi-brittle lattices with reduced compressive strength and increased damage accumulation during cyclic loading. The cyclic behavior of all lattices was characterized by a ratcheting-dominated stress-strain response. Lattices fabricated from milled Mo and milled Mo-3 wt.%Si powders demonstrated superior performance compared to those fabricated from commercial spherical Mo and milled Mo-10 wt%Si powders. The results suggest that using milled powders can enhance the mechanical reliability and promote the use of DIW as preferred additive manufacturing technology for the fabrication of Mo-Si composite lattices. (c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Journal of Materials Research and Technology. 2023, vol. 27, issue 10, p. 2475-2489.
Document type
Document version
Published version
Date of access to the full text
Language of document
Study field
Date of acceptance
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO