Pokročilá multifunkční keramika

Browse

Recent Submissions

Now showing 1 - 5 of 34
  • Item
    A Comparative Study of the Impact of La2O3 and La2Zr2O7 Dispersions on Molybdenum Microstructure, Mechanical Properties, and Fracture
    (SPRINGER, 2024-10-23) Tkachenko, Serhii; Slámečka, Karel; Bednaříková, Vendula; Remešová, Michaela; Gejdoš, Pavel; Ksenzova, Olha; Valášek, Daniel; Dvořák, Karel; Šulák, Ivo; Gálíková, Markéta; Baláž, Matej; Deák, Andréa; Cihlář, Jaroslav; Čelko, Ladislav
    We report, for the first time, the effect of lanthanum zirconate (La2Zr2O7) particles on the microstructure and mechanical behavior of an experimental molybdenum oxide dispersion-strengthened alloy. The focus was on the preparation of the novel Mo-La2Zr2O7 composite using high-energy ball milling and spark plasma sintering and on the comparison of its microstructural and mechanical properties with pure Mo and Mo-La2O3 ODS alloy counterparts. Mechanical properties were assessed using a Vickers hardness test at room temperature and a three-point flexural test in the temperature range from - 150 to 150 degrees C. The microstructure of the studied materials and their fracture behavior were evaluated using x-ray diffraction, energy-dispersive x-ray spectroscopy, and scanning electron and transmission electron microscopy. The strengthening effect of La2Zr2O7 particles was found to be lower than that of La2O3 particles, resulting in a 30-35% lower yield stress and flexural strength of the Mo-La2Zr2O7 alloy compared to the Mo-La2O3 alloy. The experimental Mo-La2Zr2O7 alloy exhibited low plasticity and no distinct ductile-to-brittle transition temperature (DBTT) in the tested temperature range, unlike pure Mo and the Mo-La2O3 alloy, which had the DBTT of 63 and 1 degrees C, respectively. Fracture occurred mainly in a brittle intergranular manner in the entire testing temperature range, while the counterpart materials showed localized plastic stretching at grain boundaries and within grains at and above the transition region. The observed behavior was primarily related to lower strengthening and brittleness as well as less effective grain boundary purification.
  • Item
    In Vivo Assessment on Freeze-Cast Calcium Phosphate-Based Scaffolds with a Selective Cell/Tissue Ingrowth
    (AMER CHEMICAL SOC, 2024-10-21) Mařáková, Lucie; Pejchal, Jaroslav; Roleček, Jakub; Vojníková, Michaela; Chlup, Zdeněk; Mařák, Vojtěch; González-Sánchez, Manuela; Čížková, Jana; Salamon, David
    Highly porous bioceramic scaffolds are widely used as bone substitutes in many applications. However, the use of bioceramics is often limited to hard tissues due to the risk of potential soft tissue calcification. A further limitation of highly porous bioceramic scaffolds is their poor mechanical stability, manifested by their tendency to break under stress. In our study, highly porous CaP-based scaffolds were prepared via freeze-casting with longitudinal and oriented pores ranging from 10 to 20 mu m and a relative porosity of similar to 70%. The resulting scaffolds achieved a flexural strength of 10.6 +/- 2.7 MPa, which, in conjunction with their favorable bioactivity, made them suitable for in vivo testing. The prepared scaffolds were subcutaneously implanted in rats for two distinct periods: 6 weeks and 6 months, respectively. The subsequent development of fibrous tissue and involvement of myofibroblasts, newly formed vessels, and macrophages were observed, with notable changes in spatial and temporal distributions within the implantation. The absence of calcification in the surrounding soft tissue, as a result of the narrow pore geometry, indicates the opportunity to tailor the scaffold behavior for soft tissue regeneration.
  • Item
    Carbon fibers decorated with TiO2 nanoparticles for photocatalytic degradation of methylene blue dye
    (Frontiers Media S.A., 2024-10-23) Chennam, Pavan Kumar; Sepúlveda Sepúlveda, Lina Marcela; Říhová, Martina; Alijani, Mahnaz; Kachlík, Martin; Zazpe Mendioroz, Raúl; Pavliňák, David; Maca, Karel; Macák, Jan
    This report demonstrates the development of carbon fibers (CFs) decorated with TiO2 nanoparticles (NPs) as an efficient photocatalyst for the photocatalytic degradation of methylene blue (MB) as a model dye. Carbon fibers were produced by carbonization of polyacrylonitrile fibers, previously produced by centrifugal spinning. Subsequently, the CFs were decorated with TiO2 NPs (CFs@TiO2) by tailored soaking protocol using aqueous TiCl4 solution with different concentrations (0.025, 0.05, 0.1, and 0.2 M). SEM analyses revealed that soaking in TiCl4 produced a smooth, conformal, continuous TiO2 nanoparticulate coating with thickness increasing from 40.4 +/- 21.2 to 257.9 +/- 63.9 nm with increasing TiCl4 concentration. X-ray diffraction and Raman spectroscopy confirmed the anatase nature of TiO2. Photocatalytic decomposition rates of MB were assessed under UV light illumination for all CFs@TiO2 samples, and it was revealed that the lowest amount of TiO2 NP on C yielded the highest rates. The synergistic interaction between CFs and TiO2 NPs with a uniform morphology and a well-crystalline anatase structure, present in an optimal amount of fiber bodies, is the key reason for the remarkable photocatalytic performance. This work shows that C fibers decorated with an optimal amount of TiO2 NPs have a great potential as an effective photocatalytic material.
  • Item
    Sintering activation energies of anisotropic layered and particle alumina/zirconia-based composites and their mechanical response
    (Elsevier, 2024-08-27) Drdlík, Daniel; Sokolov, Ilya; Hadraba, Hynek; Chlup, Zdeněk; Drdlíková, Katarina; Maca, Karel
    Information on the sintering activation energy is currently focused on evaluation of single-phase ceramic systems. This work shows the results of high-temperature dilatometry measurements of layered and particle composites based on alumina and zirconia. Layered composites with different layer thickness ratios and particle composites with variable composition in the entire concentration range were prepared by electrophoretic deposition allowing manufacturing composites with precious design and strongly bonded interfaces. The phenomena observed during the high-temperature dilatometry measurements are discussed, and the data were used to calculate the sintering activation energies of composites using the modified Master Sintering Curve concept. By covering a wide range of composite designs, it was possible to determine differences in activation energies and to show their dependence on the direction in the case of laminate composites given by the directionally dependent sintering behaviour. Sintering activation energies of layered composites were always higher than for monoliths due to constrained sintering showing maximum sintering activation energies at lower volumes of zirconia in the layers for longitudinal and transversal orientation of the samples. A similar trend was identified in particle composites due to slowed down alumina densification by the pinning effect. Additionally, mechanical properties represented by Vickers hardness and indentation elastic modulus were related to the microstructure developed during sintering. The effects of interconnectivity of phases present in the composites together with other parameters of the microstructure were described.
  • Item
    Porous silica-doped calcium phosphate scaffolds prepared via in-situ foaming method
    (ELSEVIER SCI LTD, 2024-11-01) Šiška Virágová, Eliška; Novotná, Lenka; Chlup, Zdeněk; Šťastný, Přemysl; Šárfy, Pavlína; Cihlář, Jaroslav; Kučírek, Martin; Benák, Leoš; Streit, Libor; Kocanda, Jan; Sklenský, Jan; Filipovič, Milan; Repko, Martin; Hampl, Aleš; Koutná, Irena; Částková, Klára
    The effect of silica (SiO2) addition (0 wt%-20 wt%) on the microstructural and mechanical properties, as well as the in vitro response of calcium phosphate scaffolds for potential application in bone tissue engineering (BTE) was investigated in this research. Scaffolds characterized by high porosity (77%-88 %) and interconnected spherical pores with a broad range of pore sizes (5-600 mu m) were fabricated using in-situ foaming method. Incorporated silica affected the phase transformation of hydroxyapatite (HA) to beta-tricalcium phosphate (beta-TCP) and led to the development of new crystalline silica-rich phases like silicocarnotite and wollastonite. The reinforcement of silica became apparent during the tests of mechanical properties. Scaffolds with 5 wt% of SiO2 exhibited compressive strength (1.13 MPa) higher than pure HA scaffolds (0.93 MPa). Bone bonding potential of the materials was tested in simulated body fluid (SBF), demonstrating this potential in silica-doped samples. Additionally, degradation experiments showed gradual material degradation, making it suitable for BTE applications. Furthermore, cell culture studies using human mesenchymal stromal cells (MSC) confirmed the scaffold's non- toxicity and provided insights into how the silica content influences cell viability, morphology, and osteogenic potential. The findings of this study offer valuable insights into the design and development of advanced scaffolds with tailored properties for effective BTE applications.