Facet nanoarchitectonics of visible-light driven Ag3PO4 photocatalytic micromotors: Tuning motion for biofilm eradication

dc.contributor.authorRojas Tizón, José Danielcs
dc.contributor.authorKuthanová, Michaelacs
dc.contributor.authorČíhalová, Kristýnacs
dc.contributor.authorPumera, Martincs
dc.coverage.issue1cs
dc.coverage.volume14cs
dc.date.issued2022-12-01cs
dc.description.abstractThe customized design of micro-/nanomotors represents one of the main research topics in the field of micro-/nanomotors; however, the effects of different crystal facets on micromotor movement are often neglected. In this work, self-propelled amorphous, cubic, and tetrahedral Ag3PO4 particles were synthetized using a scalable precipitation method. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Moreover, Ag3PO4 micromotors are inherently fluorescent, which allows fluorescence-based tracking. Furthermore, bacterial biofilms represent a major concern in modern society since most of them are antibiotic resistant. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward gram-positive and gram-negative bacteria. The enhanced diffusion of the particles promoted biofilm removal in comparison with static control experiments, realizing the possibility of a new class of light-driven biofilm-eradicating micromotors that do not require the use of both H2O2 and UV light. Self-propelled amorphous, cubic, and tetrahedral Ag3PO4 micromotors were synthetized using a scalable precipitation method for antibacterial applications. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Ag3PO4 micromotors are inherently fluorescent. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward eradication of gram-positive and gram-negative bacteria.en
dc.formattextcs
dc.format.extent63-cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationNPG Asia Materials. 2022, vol. 14, issue 1, p. 63-.en
dc.identifier.doi10.1038/s41427-022-00409-0cs
dc.identifier.issn1884-4057cs
dc.identifier.orcid0000-0002-4404-4668cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other179172cs
dc.identifier.researcheridV-1861-2019cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.scopus55931071900cs
dc.identifier.urihttp://hdl.handle.net/11012/208575
dc.language.isoencs
dc.publisherNATURE PORTFOLIOcs
dc.relation.ispartofNPG Asia Materialscs
dc.relation.urihttps://www.nature.com/articles/s41427-022-00409-0cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1884-4057/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectsurfaceen
dc.titleFacet nanoarchitectonics of visible-light driven Ag3PO4 photocatalytic micromotors: Tuning motion for biofilm eradicationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-179172en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:50:14en
sync.item.modts2025.01.17 16:50:03en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Chytré nanonástrojecs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41427022004090.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
s41427022004090.pdf