Facet nanoarchitectonics of visible-light driven Ag3PO4 photocatalytic micromotors: Tuning motion for biofilm eradication

Loading...
Thumbnail Image

Authors

Rojas Tizón, José Daniel
Kuthanová, Michaela
Číhalová, Kristýna
Pumera, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

NATURE PORTFOLIO
Altmetrics

Abstract

The customized design of micro-/nanomotors represents one of the main research topics in the field of micro-/nanomotors; however, the effects of different crystal facets on micromotor movement are often neglected. In this work, self-propelled amorphous, cubic, and tetrahedral Ag3PO4 particles were synthetized using a scalable precipitation method. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Moreover, Ag3PO4 micromotors are inherently fluorescent, which allows fluorescence-based tracking. Furthermore, bacterial biofilms represent a major concern in modern society since most of them are antibiotic resistant. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward gram-positive and gram-negative bacteria. The enhanced diffusion of the particles promoted biofilm removal in comparison with static control experiments, realizing the possibility of a new class of light-driven biofilm-eradicating micromotors that do not require the use of both H2O2 and UV light. Self-propelled amorphous, cubic, and tetrahedral Ag3PO4 micromotors were synthetized using a scalable precipitation method for antibacterial applications. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Ag3PO4 micromotors are inherently fluorescent. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward eradication of gram-positive and gram-negative bacteria.
The customized design of micro-/nanomotors represents one of the main research topics in the field of micro-/nanomotors; however, the effects of different crystal facets on micromotor movement are often neglected. In this work, self-propelled amorphous, cubic, and tetrahedral Ag3PO4 particles were synthetized using a scalable precipitation method. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Moreover, Ag3PO4 micromotors are inherently fluorescent, which allows fluorescence-based tracking. Furthermore, bacterial biofilms represent a major concern in modern society since most of them are antibiotic resistant. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward gram-positive and gram-negative bacteria. The enhanced diffusion of the particles promoted biofilm removal in comparison with static control experiments, realizing the possibility of a new class of light-driven biofilm-eradicating micromotors that do not require the use of both H2O2 and UV light. Self-propelled amorphous, cubic, and tetrahedral Ag3PO4 micromotors were synthetized using a scalable precipitation method for antibacterial applications. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Ag3PO4 micromotors are inherently fluorescent. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward eradication of gram-positive and gram-negative bacteria.

Description

Citation

NPG Asia Materials. 2022, vol. 14, issue 1, p. 63-.
https://www.nature.com/articles/s41427-022-00409-0

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO