Facet nanoarchitectonics of visible-light driven Ag3PO4 photocatalytic micromotors: Tuning motion for biofilm eradication

Loading...
Thumbnail Image
Date
2022-12-01
Authors
Rojas Tizón, José Daniel
Kuthanová, Michaela
Číhalová, Kristýna
Pumera, Martin
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
NATURE PORTFOLIO
Altmetrics
Abstract
The customized design of micro-/nanomotors represents one of the main research topics in the field of micro-/nanomotors; however, the effects of different crystal facets on micromotor movement are often neglected. In this work, self-propelled amorphous, cubic, and tetrahedral Ag3PO4 particles were synthetized using a scalable precipitation method. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Moreover, Ag3PO4 micromotors are inherently fluorescent, which allows fluorescence-based tracking. Furthermore, bacterial biofilms represent a major concern in modern society since most of them are antibiotic resistant. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward gram-positive and gram-negative bacteria. The enhanced diffusion of the particles promoted biofilm removal in comparison with static control experiments, realizing the possibility of a new class of light-driven biofilm-eradicating micromotors that do not require the use of both H2O2 and UV light. Self-propelled amorphous, cubic, and tetrahedral Ag3PO4 micromotors were synthetized using a scalable precipitation method for antibacterial applications. Their programmable morphologies exhibited different motion properties under fuel-free and surfactant-free conditions and visible light irradiation. Differences in these motion properties were observed according to morphology and correlated with photocatalytic activity. Ag3PO4 micromotors are inherently fluorescent. The as-prepared self-propelled particles exhibited morphologically dependent antibiofilm activities toward eradication of gram-positive and gram-negative bacteria.
Description
Keywords
Citation
NPG Asia Materials. 2022, vol. 14, issue 1, p. 63-.
https://www.nature.com/articles/s41427-022-00409-0
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO