Energie budoucnosti a inovace
Browse
Recent Submissions
Now showing 1 - 5 of 82
- ItemMulti-material 3D printed smart floor tiles with triboelectric energy generation and security monitoring(TAYLOR & FRANCIS LTD, 2025-03-13) Mappoli, Shidhin; Ghosh, Kalyan; Pumera, MartinWith the growing demand for integrated smart home systems driven by advancements in the Internet of Things (IoT) and smart city initiatives, the need for efficient, simple, and self-sustaining sensors has become essential. Triboelectric nanogenerators (TENGs) have recently emerged as a promising device for both energy harvesting and sensing. However, the fabrication of different TENG layers using conventional techniques is often complex, time-intensive, and involves multiple processing steps. Here, a single-step multi-material 3D printing (MMP) approach is used to fabricate the fully functional TENG device, consisting of positive and negative triboelectric layers, current collectors and supporting substrate. Nylon 6 and carbon/polyvinylidene fluoride (C/PVDF) filaments are selected for positive and negative triboelectric layers, respectively and conductive carbon/polylactic acid (C/PLA) filament was selected for both current collectors and wood/PLA is selected for both top and bottom supporting layers. The MMP-TENG is integrated with electronics to showcase its capability for remote monitoring in smart home settings to detect real-time fall detection and security monitoring. This research will pave the way for fabricating a smart floor for security monitoring and energy generation in a smart building.
- ItemLight-Programmable g-C3N4 Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation(AAAS, 2025-01-28) Yuan, Yunhuan; Wu, Xianghua; Kalleshappa, Bindu; Pumera, MartinMicrorobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-C3N4 is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO2 and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-C3N4 for these applications is still in its early stages. This work presents microrobots entirely based on g-C3N4 microtubes, which can initiate autonomous movement when exposed to ultraviolet and visible light. We observed distinct motion behaviors of the microrobots under light irradiation of different wavelengths. Specifically, under ultraviolet light, the microrobots exhibit negative photogravitaxis, while under visible light, they demonstrate a combination of 3-dimensional motion and 2-dimensional motion. Therefore, the wavelength of the light can be used for programming the motion style of the microrobots and subsequently their application. We show that the microrobots can effectively degrade the antibiotic tetracycline, displaying their potential for antibiotic removal. This exploration of autonomous motion behaviors under different wavelength conditions helps to expand research on g-C3N4-based microrobots and their potential for environmental remediation.
- ItemActive Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms(AMER CHEMICAL SOC, 2025-01-02) Peng, Xia; Oral, Çaatay Mert; Urso, Mario; Ussia, Martina; Pumera, MartinBacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFe2O4 (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces. Magnetically driven ZFO microrobots were realized by synthesizing ZFO microspheres through a low-cost and large-scale hydrothermal synthesis, followed by a calcination process. Then, a Pt layer was deposited on the surface of the ZFO microspheres to break their symmetry, resulting in self-propelled light-driven Janus ZFO/Pt microrobots. Light-driven ZFO/Pt microrobots exhibited active locomotion under UV light irradiation and controllable motion in terms of "stop and go" features. Magnetically driven ZFO microrobots were capable of maneuvering precisely when subjected to an external rotating magnetic field. These microrobots could eliminate Gram-negative Escherichia coli (E. coli) biofilms through photogenerated reactive oxygen species (ROS)-related antibacterial properties in combination with their light-powered active locomotion, accelerating the mass transfer to remove biofilms more effectively in water. Moreover, the actuation of magnetically driven ZFO microrobots allowed for the physical disruption of biofilms, which represents a reliable alternative to photocatalysis for the removal of strongly anchored biofilms in confined spaces. With their versatile characteristics, the envisioned microrobots highlight a significant potential for biofilm removal with high efficacy in both open and confined spaces, such as the pipelines of industrial plants.
- ItemSingle-Atom Colloidal Nanorobotics Enhanced Stem Cell Therapy for Corneal Injury Repair(American Chemical Society, 2025-05-13) Ju, Xiaohui; Javorková, Eliška; Michalička, Jan; Pumera, MartinCorneal repair using mesenchymal stem cell therapy faces challenges due to long-term cell survival issues. Here, we design cerium oxide with gold single-atom-based nanorobots (CeSAN-bots) for treating corneal damage in a synergistic combination with stem cells. Powered by glucose, CeSAN-bots exhibit enhanced diffusion and active motion due to the cascade reaction catalyzed by gold and cerium oxide. CeSAN-bots demonstrate a two-fold increase in cellular uptake efficiency into mesenchymal stem cells compared to passive uptake. CeSAN-bots possess intrinsic antioxidant and immunomodulatory properties, promoting corneal regeneration. Validation in a mouse corneal alkali burn model reveals an improvement in corneal clarity restoration when stem cells are incorporated with CeSAN-bots. This work presents a strategy for developing glucose-driven, enzyme-free, single-atom-based ultrasmall nanorobots with promising applications in targeted intracellular delivery in diverse biological environments.
- ItemAllotrope-dependent activity-stability relationships of molybdenum sulfide hydrogen evolution electrocatalysts(NATURE PORTFOLIO, 2024-04-29) Escalera-López, Daniel; Iffelsberger, Christian; Zlatar, Matej; Novčić, Katarina; Maselj, Nik; Van Pham, Chuyen; Jovanovič, Primož; Hodnik, Nejc; Thiele, Simon; Pumera, Martin; Cherevko, SerhiyMolybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed. The stability of non-noble catalysts is key for their use in proton exchange membrane water electrolysers. Here, authors study activity-stability relationships of MoSx allotropes for H2 production, reporting allotrope-dependent stabilities and dissolution pathways, and propose operation guidelines.