Energie budoucnosti a inovace

Browse

Recent Submissions

Now showing 1 - 5 of 65
  • Item
    Nanoarchitectonics of Laser Induced MAX 3D-Printed Electrode for Photo-Electrocatalysis and Energy Storage Application with Long Cyclic Durability of 100 000 Cycles
    (WILEY-V C H VERLAG GMBH, 2024-11-01) Nouseen, Shaista; Deshmukh, Sujit; Pumera, Martin
    3D printing, a rapidly expanding domain of additive manufacturing, enables the fabrication of intricate 3D structures with adjustable fabrication parameters and scalability. Nonetheless, post-fabrication, 3D-printed materials often require an activation step to eliminate non-conductive polymers, a process traditionally achieved through chemical, thermal, or electrochemical methods. These conventional activation techniques, however, suffer from inefficiency and inconsistent results. In this study, a novel chemical-free activation method employing laser treatment is introduced. This innovative technique effectively activates 3D-printed electrodes, which are then evaluated for their photo and electrochemical performance against traditional solvent-activated counterparts. The method not only precisely ablates surplus non-conductive polymers but also exposes and activates the underlying electroactive materials. The 3D-printed electrodes, processed with this single-step laser approach, exhibit a notably low overpotential of approximate to 505 mV at a current density of -10 mA cm(-2) under an illumination wavelength of 365 nm. These electrodes also demonstrate exceptional durability, maintaining stability through >100 000 cycles in energy storage applications. By amalgamating 3D printing with laser processing, the creation of electrodes with complex structures and customizable properties is enabled. This synergy paves the way for streamlined production of such devices in the field of energy conversion and storage.
  • Item
    Real Time Tracking of Nanoconfined Water-Assisted Ion Transfer in Functionalized Graphene Derivatives Supercapacitor Electrodes
    (WILEY, 2024-10-01) Kandambath Padinjareveetil, Akshay Kumar; Pykal, Martin; Bakandritsos, Aristides; Zbořil, Radek; Otyepka, Michal; Pumera, Martin
    Water molecules confined in nanoscale spaces of 2D graphene layers have fascinated researchers worldwide for the past several years, especially in the context of energy storage applications. The water molecules exchanged along with ions during the electrochemical process can aid in wetting and stabilizing the layered materials resulting in an anomalous enhancement in the performance of supercapacitor electrodes. Engineering of 2D carbon electrode materials with various functionalities (oxygen (& horbar;O), fluorine (& horbar;F), nitrile (& horbar;C equivalent to N), carboxylic (& horbar;COOH), carbonyl (& horbar;C & boxH;O), nitrogen (& horbar;N)) can alter the ion/water organization in graphene derivatives, and eventually their inherent ion storage ability. Thus, in the current study, a comparative set of functionalized graphene derivatives-fluorine-doped cyanographene (G-F-CN), cyanographene (G-CN), graphene acid (G-COOH), oxidized graphene acid (G-COOH (O)) and nitrogen superdoped graphene (G-N) is systematically evaluated toward charge storage in various aqueous-based electrolyte systems. Differences in functionalization on graphene derivatives influence the electrochemical properties, and the real-time mass exchange during the electrochemical process is monitored by electrochemical quartz crystal microbalance (EQCM). Electrogravimetric assessment revealed that oxidized 2D acid derivatives (G-COOH (O)) are shown to exhibit high ion storage performance along with maximum water transfer during the electrochemical process. The complex understanding of the processes gained during supercapacitor electrode charging in aqueous electrolytes paves the way toward the rational utilization of graphene derivatives in forefront energy storage applications. Covalent functionalization and doping of graphene surfaces -featuring groups such as oxygen, cyano-, carbon-fluorine, carboxyl groups, and nitrogen heteroatoms- significantly affects water-assisted ion transfer as monitored with electrochemical quartz crystal microbalance, modulating the performance of supercapacitor electrodes. Such studies are crucial for advancing energy storage applications with a broader impact across electrochemistry-related technological domains. image
  • Item
    Advanced materials for micro/nanorobotics
    (ROYAL SOC CHEMISTRY, 2024-09-16) Kim, Jeonghyo; Mayorga Burrezo, Paula; Song, Su-Jin; Mayorga-Martinez, Carmen C.; Medina-Sanchez, Mariana; Pane, Salvador; Pumera, Martin
    Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed. This review explores advanced materials in micro/nanorobotics, focusing on five key material families that enhance robotic functionality and intelligence, and discusses their applications and future perspectives.
  • Item
    3D printed Ti3C2@Polymer based artificial forest for autonomous water harvesting system
    (NATURE PORTFOLIO, 2024-09-16) Vaghasiya, Jayraj Vinubhai; Sonigara, Kevalkumar Kishorbhai; Mayorga-Martinez, Carmen C.; Pumera, Martin
    The escalating scarcity of freshwater resources presents significant challenges to global sustainability, demanding innovative solutions by integrating cutting-edge materials and technologies. Here we introduce an autonomous artificial forest (3D AF) for continuous freshwater acquisition. This system features a three-dimensional (3D) architecture incorporating a carbon nanofiber (CNF) network and MXene@polypyrrole (Ti3C2@PPy), enhancing surface area, light absorption, heat distribution, and surface wettability to improve solar vapor generation and fog collection efficiency. The autonomous operation is facilitated by an integrated photothermal actuator that adjusts to the day and night conditions. During daylight, the 3D AF tilts downward to maximize solar exposure for water evaporation, while at night, it self-adjusts to optimize fog particle collection. Notably, our device demonstrates the ability to harvest over 5.5 L m(-2) of freshwater daily outdoors. This study showcases the potential of integrating advanced materials and technologies to address pressing global freshwater challenges, paving the way for future innovations in water harvesting.
  • Item
    Single Atom Engineering for Nanorobotics
    (AMER CHEMICAL SOC, 2024-07-24) Ju, Xiaohui; Pumera, Martin
    The fields of single atom engineering represent cutting-edge areas in nanotechnology and materials science, pushing the boundaries of how small we can go in engineering functional devices and materials. Nanorobots, or nanobots, are robotic systems scaled down to the nanometer level and designed to perform tasks at similarly small scales. Single atom engineering, on the other hand, involves manipulating individual atoms to create precise materials and devices with controlled properties and functionalities. By integrating single atom engineering into nanorobotics, we unlock the potential to enable the precise incorporation of multiple functionalities onto these minuscule machines with nanometer-level precision. In this perspective, we describe the nascent field of single atom engineering in nanorobotics.