Se-doped Nb2O5-Al2O3 composite-ceramic nanoarrays via the anodizing of Al/Nb bilayer in selenic acid

Loading...
Thumbnail Image

Authors

Kamnev, Kirill
Bendová, Mária
Pytlíček, Zdeněk
Prášek, Jan
Kejík, Lukáš
Guell, Frank
Llobet, Eduard
Mozalev, Alexander

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Novel arrays of Nb2O5-based ceramic nanostructures of various sizes (9-210 nm) and morphologies (dots, goblets, rods) aligned on substrates are fabricated via the anodizing of a thin Nb film through the initially formed porous anodic alumina (PAA) film in 1.5 M selenic acid (H2SeO4) - a new aqueous electrolyte generating extraordinarily thinner PAA pores than any other solutions. Accordingly, the nanostructures formed in the selenic acid are 1.3-fold thinner and better self-ordered than their counterparts formed from the same Al/Nb precursor bilayer in a reference oxalic-acid electrolyte. The nanostructures have a dual (core/shell) composition: the inner material (the core) is stoichiometric Nb2O5, whereas the outer layer (the shell) is a few nm-thick substoichiometric NbOx mixed with Al2O3. The composite-ceramic nanoarrays grow doped with selenium species such as selenate (SeO42-) and selenide (Se-2(-)) anions originating from the electrolyte and migrating inward under the high electric field. The incorporated Se species do not contribute to photoluminescence emission nor hinder the Raman signal from the nanoarrays, which makes them highly promising as Nb2O5-based SERS biosensing substrates. The planar PAA-inbuilt Se-doped Nb2O5-Al2O3 nanostructured ceramic film performs like a high-k low-loss low-leakage-current dielectric promising for on-chip integration. More potential applications of the Se-doped ceramic nanoarrays developed here include biomedical antibacterial coatings, advanced superhydrophobic surfaces, gas-sensing, and catalytic layers.
Novel arrays of Nb2O5-based ceramic nanostructures of various sizes (9-210 nm) and morphologies (dots, goblets, rods) aligned on substrates are fabricated via the anodizing of a thin Nb film through the initially formed porous anodic alumina (PAA) film in 1.5 M selenic acid (H2SeO4) - a new aqueous electrolyte generating extraordinarily thinner PAA pores than any other solutions. Accordingly, the nanostructures formed in the selenic acid are 1.3-fold thinner and better self-ordered than their counterparts formed from the same Al/Nb precursor bilayer in a reference oxalic-acid electrolyte. The nanostructures have a dual (core/shell) composition: the inner material (the core) is stoichiometric Nb2O5, whereas the outer layer (the shell) is a few nm-thick substoichiometric NbOx mixed with Al2O3. The composite-ceramic nanoarrays grow doped with selenium species such as selenate (SeO42-) and selenide (Se-2(-)) anions originating from the electrolyte and migrating inward under the high electric field. The incorporated Se species do not contribute to photoluminescence emission nor hinder the Raman signal from the nanoarrays, which makes them highly promising as Nb2O5-based SERS biosensing substrates. The planar PAA-inbuilt Se-doped Nb2O5-Al2O3 nanostructured ceramic film performs like a high-k low-loss low-leakage-current dielectric promising for on-chip integration. More potential applications of the Se-doped ceramic nanoarrays developed here include biomedical antibacterial coatings, advanced superhydrophobic surfaces, gas-sensing, and catalytic layers.

Description

Citation

Ceramics International. 2023, vol. 49, issue 22, Part A, p. 34712-34725.
https://www.sciencedirect.com/science/article/pii/S0272884223023878

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO