Metody hlubokého učení pro strojové hraní hry Scotland Yard

Loading...
Thumbnail Image

Date

Authors

Hrkľová, Zuzana

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Táto práca sa zaoberá metódami hlbokého učenia, ktoré sú aplikovateľné na stolné hry s neurčitosťou. V rámci práce boli naštudované princípy učenia s posilňovaním, s hlavným zameraním na Q-learning algoritmy, spomedzi ktorých bol vybraný Deep Q-Network algoritmus. Ten bol následne implementovaný na zjednodušených pravidlách stolnej hry Scotland Yard. Konečná implementácia bola porovnaná s metódami Alpha-Beta a Monte Carlo Tree Search. S výsledkov vyplinulo, že schovávaný hráč riadený DQN algoritmom predstavoval pre ostatné metódy najťažšieho protihráča, narozdiel od hľadajúcich hráčov, ktorým sa nepodarilo zlepšiť existujúce riešenia. Napriek tomu, že implementovaná metóda nedosiahla lepšie výsledky oproti doposiaľ existujúcim metódam, ukázalo sa, že potrebuje najmenej výpočetných zdrojov a času na vykonanie daného ťahu. To ju robí najperspektívnejšou zo spomínaných metód na budúcu možnú implementáciu originálnej verzie danej hry.
This theses concerns with deep learning methods applied to machine playing board games containing movement uncertainty. Reinforcement learning principles with main focus on Q-learning algorithms were studied, among which Deep Q--Network had been chosen and applied on simplified rules of the Scotland Yard board game. The final implementation was put to test against Alpha-Beta and Monte Carlo Tree Search. The results have shown that the hider driven by DQN represented the hardest opponent for the other two methods, while the DQN seekers did not manage to surpass past results. Although the implemented method did not reach better results than currently known methods, it proved to be the least demanding when considering computational resources and time needed to perform a given move, making it the most perspective to implement on original version of the game in the future.

Description

Citation

HRKĽOVÁ, Z. Metody hlubokého učení pro strojové hraní hry Scotland Yard [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2023.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Informační technologie

Comittee

doc. Ing. František Zbořil, Ph.D. (předseda) doc. Mgr. Adam Rogalewicz, Ph.D. (člen) Ing. David Bařina, Ph.D. (člen) doc. Ing. Michal Bidlo, Ph.D. (člen) doc. Ing. Radek Burget, Ph.D. (člen)

Date of acceptance

2023-06-13

Defence

Studentka nejprve prezentovala výsledky, kterých dosáhla v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Studentka následně odpověděla na otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studentky na položené otázky rozhodla práci hodnotit stupněm C.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO