MoOx-based high-density nanoarrays on a substrate via smart anodizing as novel 3D electrodes for nano-energy applications
dc.contributor.author | Mozalev, Alexander | cs |
dc.contributor.author | Bendová, Mária | cs |
dc.contributor.author | Kalina, Lukáš | cs |
dc.contributor.author | Prášek, Jan | cs |
dc.contributor.author | Gispert-Guirado, Francesc | cs |
dc.contributor.author | Llobet, Eduard | cs |
dc.coverage.issue | 25 | cs |
dc.coverage.volume | 13 | cs |
dc.date.accessioned | 2025-07-17T08:59:35Z | |
dc.date.available | 2025-07-17T08:59:35Z | |
dc.date.issued | 2025-05-27 | cs |
dc.description.abstract | For the first time, arrays of MoOx-based nanostructures of various sizes and morphologies, vertically aligned on a substrate, have been synthesized self-organized via the PAA-assisted anodization of a Mo layer through a very thin Nb interlayer. Such a smart anodization enabled the nucleation and sustainable growth of fully amorphous MoOx nanostructures within and under the PAA nanopores, which is impossible by direct molybdenum anodizing or other methods. The MoOx-based nanoarrays revealed the potential for applications in semiconductor nanoelectronics where the intensive and localized at the nanoscale electron transport, reversible redox reactions, high population density of nanochannels, and tailored crystallinity are in demand. The disclosed intercalation pseudocapacitance behavior of the rods' cores and the competitive performance metrics make the films promising as nanostructured electrodes for on-chip energy-related applications. The works to improve the electron-transport properties of the shells, explore field-emission and memristive potentials of the nanoarrays, and design relevant device configurations are in progress and will be reported in due course. | en |
dc.format | text | cs |
dc.format.extent | 19605-19622 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Journal of Materials Chemistry A. 2025, vol. 13, issue 25, p. 19605-19622. | en |
dc.identifier.doi | 10.1039/d5ta02921j | cs |
dc.identifier.issn | 2050-7488 | cs |
dc.identifier.orcid | 0000-0002-9505-5359 | cs |
dc.identifier.orcid | 0000-0001-8127-8175 | cs |
dc.identifier.orcid | 0000-0003-1228-5712 | cs |
dc.identifier.other | 198071 | cs |
dc.identifier.researcherid | H-3928-2012 | cs |
dc.identifier.researcherid | E-2387-2012 | cs |
dc.identifier.scopus | 6601972151 | cs |
dc.identifier.scopus | 55255338000 | cs |
dc.identifier.scopus | 7003947942 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/255192 | |
dc.language.iso | en | cs |
dc.publisher | Royal Society of Chemistry | cs |
dc.relation.ispartof | Journal of Materials Chemistry A | cs |
dc.relation.uri | https://pubs.rsc.org/en/content/articlehtml/2025/ta/d5ta02921j | cs |
dc.rights | Creative Commons Attribution-NonCommercial 3.0 Unported | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2050-7488/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/ | cs |
dc.subject | anodizing;porous anodic alumina;molybdenum oxide | en |
dc.subject | pseudocapacitors | en |
dc.subject | nanoenergy | en |
dc.title | MoOx-based high-density nanoarrays on a substrate via smart anodizing as novel 3D electrodes for nano-energy applications | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.grantNumber | info:eu-repo/grantAgreement/GA0/GA/GA23-07848S | cs |
sync.item.dbid | VAV-198071 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.07.17 10:59:35 | en |
sync.item.modts | 2025.07.17 10:34:07 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálů | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektroniky | cs |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1 | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Mozalev et al_JMCA_Advance Article_2025.pdf
- Size:
- 4.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- file Mozalev et al_JMCA_Advance Article_2025.pdf