MoOx-based high-density nanoarrays on a substrate via smart anodizing as novel 3D electrodes for nano-energy applications

Loading...
Thumbnail Image

Authors

Mozalev, Alexander
Bendová, Mária
Kalina, Lukáš
Prášek, Jan
Gispert-Guirado, Francesc
Llobet, Eduard

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Society of Chemistry
Altmetrics

Abstract

For the first time, arrays of MoOx-based nanostructures of various sizes and morphologies, vertically aligned on a substrate, have been synthesized self-organized via the PAA-assisted anodization of a Mo layer through a very thin Nb interlayer. Such a smart anodization enabled the nucleation and sustainable growth of fully amorphous MoOx nanostructures within and under the PAA nanopores, which is impossible by direct molybdenum anodizing or other methods. The MoOx-based nanoarrays revealed the potential for applications in semiconductor nanoelectronics where the intensive and localized at the nanoscale electron transport, reversible redox reactions, high population density of nanochannels, and tailored crystallinity are in demand. The disclosed intercalation pseudocapacitance behavior of the rods' cores and the competitive performance metrics make the films promising as nanostructured electrodes for on-chip energy-related applications. The works to improve the electron-transport properties of the shells, explore field-emission and memristive potentials of the nanoarrays, and design relevant device configurations are in progress and will be reported in due course.
For the first time, arrays of MoOx-based nanostructures of various sizes and morphologies, vertically aligned on a substrate, have been synthesized self-organized via the PAA-assisted anodization of a Mo layer through a very thin Nb interlayer. Such a smart anodization enabled the nucleation and sustainable growth of fully amorphous MoOx nanostructures within and under the PAA nanopores, which is impossible by direct molybdenum anodizing or other methods. The MoOx-based nanoarrays revealed the potential for applications in semiconductor nanoelectronics where the intensive and localized at the nanoscale electron transport, reversible redox reactions, high population density of nanochannels, and tailored crystallinity are in demand. The disclosed intercalation pseudocapacitance behavior of the rods' cores and the competitive performance metrics make the films promising as nanostructured electrodes for on-chip energy-related applications. The works to improve the electron-transport properties of the shells, explore field-emission and memristive potentials of the nanoarrays, and design relevant device configurations are in progress and will be reported in due course.

Description

Citation

Journal of Materials Chemistry A. 2025, vol. 13, issue 25, p. 19605-19622.
https://pubs.rsc.org/en/content/articlehtml/2025/ta/d5ta02921j

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial 3.0 Unported
Citace PRO