Comparative Study of Op-Amp-based Integrators Suitable for Fractional-Order Controller Design

Loading...
Thumbnail Image

Authors

Herencsár, Norbert
Kartci, Aslihan
Yildiz, Hacer A.
Šotner, Roman
Dvořák, Jan
Kubánek, David
Jeřábek, Jan
Koton, Jaroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

In this paper, a fractional-order capacitor (FOC) of an order = 0.89 (i.e. constant phase angle –80.1 degree) was emulated via Valsa RC network with five branches. The network component values were optimized using modified least squares quadratic method in a wide frequency range of 100 mHz–1 kHz (i.e. 4 decades) and maximum relative phase error 0.78% was obtained. The design specification corresponds to a speed control system of an armature controlled DC motor, which is often used in control theory. Overall performance evaluation shows the product of evaluated key features (e.g. phase angle deviation and absolute values of relative phase, impedance, and pseudocapacitance errors) for the optimized FOC is 13.3% less than the one obtained via Valsa approximation. The behavior of Op-Amp-based non-inverting configurations of analogue fractional-order integral operator s– employing the optimized FOC, where 0 < < 1, is compared. The behavior of studied integrator circuits is confirmed by SPICE simulations using the readily available Texas Instruments TL072 low-noise Op-Amp macromodel, which is commonly used in electronics.
In this paper, a fractional-order capacitor (FOC) of an order = 0.89 (i.e. constant phase angle –80.1 degree) was emulated via Valsa RC network with five branches. The network component values were optimized using modified least squares quadratic method in a wide frequency range of 100 mHz–1 kHz (i.e. 4 decades) and maximum relative phase error 0.78% was obtained. The design specification corresponds to a speed control system of an armature controlled DC motor, which is often used in control theory. Overall performance evaluation shows the product of evaluated key features (e.g. phase angle deviation and absolute values of relative phase, impedance, and pseudocapacitance errors) for the optimized FOC is 13.3% less than the one obtained via Valsa approximation. The behavior of Op-Amp-based non-inverting configurations of analogue fractional-order integral operator s– employing the optimized FOC, where 0 < < 1, is compared. The behavior of studied integrator circuits is confirmed by SPICE simulations using the readily available Texas Instruments TL072 low-noise Op-Amp macromodel, which is commonly used in electronics.

Description

Citation

Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary. 2019, p. 740-743.
https://ieeexplore.ieee.org/document/8768843

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO