Ústav radioelektroniky
Browse
Recent Submissions
Now showing 1 - 5 of 234
- ItemSpectral–Spatial Transformer-based Semantic Segmentation for Large-scale Mapping of Individual Date Palm Trees using Very High-resolution Satellite Data(Elsevier, 2024-05-08) Al-Ruzouq, Rami; Gibril, Mohamed Barakat A.; Shanableh, Abdallah; Bolcek, Jan; Lamghari, Fouad; Hammour, Nezar Atalla; Al-Keblawy, Ali; Jena, RatiranjanDate palm plantations in the United Arab Emirates (UAE) are under threat from soil salinity, drought, and date palm weevils. Accordingly, monitoring and conserving date palms are crucial to preserving a vital component of the country’s agricultural heritage, economy, food security, and ecological balance. Previous studies have effectively identified date palm trees using RGB-based aerial and UAV imagery utilizing diverse deep learning methods. However, the utilization of very high-resolution satellite data for delineating individual date palm crowns remains unexplored due to the limited spatial resolution capabilities of existing satellite systems. This study primarily aimed to achieve precise and comprehensive mapping of date palm trees using WorldView-3 (WV-3) satellite data by leveraging the high representational power of the state-of-the-art vision transformers (ViT) in capturing global information from the input data. First, an in-depth analysis assessment of the various transformer-based semantic segmentation architectures, including UperNet with vision transformer and Swin transformer, SegFormer, Mask2Former, and UniFormer, was conducted. Second, the integration of spectral data on the performance of ViTs was evaluated. Moreover, the models’ generalizability and complexity effect on the segmentation effectiveness were assessed. Accordingly, a postprocessing strategy was developed to aid in delineating and counting date palm trees from semantic segmentation outputs. Results demonstrated that integration of WV-3 spectral data into the analysis resulted in a marked improvement in segmentation quality. The UniFormer, UperNet-Swin, and Mask2Former models demonstrated considerable improvements in multispectral data analysis, with increases in mean intersection over union (mIoU) of 2.17% (77.88% mIoU, 86.01% mean F-score [mF-score]), 2% (78.10% mIoU, 86.18% mF-score), and 1.15% (77.36% mIoU, 85.59% mF-score), respectively, compared with their RGB-based results. Evaluations of model transferability also indicated that Mask2Former, UniFormer, and UperNet-Swin transformers efficiently adapted to multispectral data in the Dibba region. These models achieved mIoU scores of 84.36%, 84.25%, and 83.17% and mF-scores of 90.95%, 90.87%, and 90.13%, highlighting their effectiveness and potential for broader regional application. This research highlights the efficacy and feasibility of using ViTs with WV-3 multispectral data for accurate and comprehensive surveying of date palm plantations, enabling the development of palm tree inventories and continuously updating geospatial databases.
- ItemA Novel Approach to the Production of Printed Patch Antennas(MDPI, 2024-02-15) Popela, Miroslav; Olivová, Jana; Plíva, Zdeněk; Petržílka, Leoš; Krchová, Michaela; Joska, Zdeněk; Janů, PřemyslThis paper presents the manufacturing of a patch antenna using an advanced 3D printing technology called lights-out digital additive manufacturing (LDM). This 3D LDM printing technology is mainly used for printing circuit boards (PCBs); however, it has also been used to print a patch antenna from conductive (CI) and dielectric ink (DI). This 3D LDM-printed antenna was compared with antennas on different dielectric substrates (Arlon 25N and FR4). The obtained results are compared and analyzed in this paper.
- ItemIntegrated Building Cells for a Simple Modular Design of Electronic Circuits with Reduced External Complexity: Performance, Active Element Assembly, and an Application Example(MDPI, 2019-05-22) Šotner, Roman; Jeřábek, Jan; Polák, Ladislav; Prokop, Roman; Kledrowetz, VilémThis paper introduces new integrated analog cells fabricated in a C035 I3T25 0.35-m ON Semiconductor process suitable for a modular design of advanced active elements with multiple terminals and controllable features. We developed and realized five analog cells on a single integrated circuit (IC), namely a voltage differencing differential buffer, a voltage multiplier with current output in full complementary metal–oxide–semiconductor (CMOS) form, a voltage multiplier with current output with a bipolar core, a current-controlled current conveyor of the second generation with four current outputs, and a single-input and single-output adjustable current amplifier. These cells (sub-blocks of the manufactured IC device), designed to operate in a bandwidth of up to tens of MHz, can be used as a construction set for building a variety of advanced active elements, offering up to four independently adjustable internal parameters. The performances of all individual cells were verified by extensive laboratory measurements, and the obtained results were compared to simulations in the Cadence IC6 tool. The definition and assembly of a newly specified advanced active element, namely a current-controlled voltage differencing current conveyor transconductance amplifier (CC-VDCCTA), is shown as an example of modular interconnection of the selected cells. This device was implemented in a newly synthesized topology of an electronically linearly tunable quadrature oscillator. Features of this active element were verified by simulations and experimental measurements.
- ItemDesign of Signal Generators Using Active Elements Developed in I3T25 CMOS Technology Single IC Package for Illuminance to Frequency Conversion(MDPI, 2020-02-21) Šotner, Roman; Jeřábek, Jan; Polák, Ladislav; Kledrowetz, Vilém; Prokop, RomanThis paper presents a compact and simple design of adjustable triangular and square wave functional generators employing fundamental cells fabricated on a single integrated circuit (IC) package. Two solutions have electronically tunable repeating frequency. The linear adjustability of repeating frequency was verified in the range between 17 and 264 kHz. The main benefits of the proposed generator are the follows: A simple adjustment of the repeating frequency by DC bias current, Schmitt trigger (threshold voltages) setting by DC driving voltage, and output levels in hundreds of mV when the complementary metal-oxide semiconductor (CMOS) process with limited supply voltage levels is used. These generators are suitable to provide a simple conversion of illuminance to frequency of oscillation that can be employed for illuminance measurement and sensing in the agriculture applications. Experimental measurements proved that the proposed concept is usable for sensing of illuminance in the range from 1 up to 500 lx. The change of illuminance within this range causes driving of bias current between 21 and 52 mu A that adjusts repeating frequency between 70 and 154 kHz with an error up to 10% between the expected and real cases.
- ItemThe CMOS Highly Linear Current Amplifier with Current Controlled Gain for Sensor Measurement Applications(MDPI, 2020-08-18) Prokop, Roman; Šotner, Roman; Kledrowetz, VilémThis paper introduces a new current-controlled current-amplifier suitable for precise measurement applications. This amplifier was developed with strong emphasis on linearity leading to low total harmonic distortion (THD) of the output signal, and on linearity of the gain control. The presented circuit is characterized by low input and high output impedances. Current consumption is significantly smaller than with conventional quadratic current multipliers and is comparable in order to the maximum processed input current, which is +/- 200 mu A. This circuit is supposed to be used in many sensor applications, as well as a precise current multiplier for general analog current signal processing. The presented amplifier (current multiplier) was designed by an uncommon topology based on linear sub-blocks using MOS transistors working in their linear region. The described circuit was designed and fabricated in a C035 I3T25 0.35-mu m ON Semiconductor process because of the demand of the intended application for higher supply voltage. Nevertheless, the topology is suitable also for modern smaller CMOS technologies and lower supply voltages. The performance of the circuit was verified by laboratory measurement with parameters comparable to the Cadence simulation results and presented here.