Design and Fabrication of Fully Implantable MEMS Cochlea

Loading...
Thumbnail Image

Authors

Svatoš, Vojtěch
Pekárek, Jan
Dušek, Daniel
Žák, Jaromír
Hadaš, Zdeněk
Prášek, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The micro-electro-mechanical array for application as fully implantable cochlea is presented in this paper. The complete system including a short overview of energy harvesting and the system configuration is proposed. This study mainly covers mechanical properties of cochlea microfabricated silicon structure. Electro-mechanical simulations are proceeded to optimize the material used for resonators, the size of array membranes and to estimate the resistive change due to the input sound signal. The sound is detected by thin SiXNY diaphragm due to resonant frequency and the displacement of the membrane caused by acoustic pressure. The displacement is detected employing piezoresistive electrodes (NiCr). Design and fabrication process based on MEMS technology are described and discussed. The response measurement of the cochlea structure is performed.
The micro-electro-mechanical array for application as fully implantable cochlea is presented in this paper. The complete system including a short overview of energy harvesting and the system configuration is proposed. This study mainly covers mechanical properties of cochlea microfabricated silicon structure. Electro-mechanical simulations are proceeded to optimize the material used for resonators, the size of array membranes and to estimate the resistive change due to the input sound signal. The sound is detected by thin SiXNY diaphragm due to resonant frequency and the displacement of the membrane caused by acoustic pressure. The displacement is detected employing piezoresistive electrodes (NiCr). Design and fabrication process based on MEMS technology are described and discussed. The response measurement of the cochlea structure is performed.

Description

Citation

Energy Procedia. 2015, vol. 100, issue 1, p. 1224-1231.
https://www.sciencedirect.com/science/article/pii/S1877705815005147

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO