A CMOS Multiplied Input Differential Difference Amplifier: A New Active Device and Its Applications

Loading...
Thumbnail Image

Authors

Šotner, Roman
Jeřábek, Jan
Prokop, Roman
Kledrowetz, Vilém
Polák, Josef

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG
Altmetrics

Abstract

This paper presents a newly developed active device, referred to as a multiplied input differential difference amplifier (MIDDA), which allows operations of summation/subtraction and multiplication of input signals. It was designed and fabricated using I3T25 0.35 um ON (ON Semiconductor, Phoenix, AZ, USA) Semiconductor technology. The achieved results, which describe the experimentally verified behaviour of the fabricated device, are introduced, as well as the simple applications of MIDDA with electronically controllable parameters, useful for analogue signal processing. Moreover, the paper discusses an interesting example of nonlinear application to a double-sideband amplitude modulator, based on the utilization of multiplication and summation of particular signals. The laboratory experimental results which are achieved through the use of a fabricated prototype (both in time and frequency domain), confirm the workability of the concept.
This paper presents a newly developed active device, referred to as a multiplied input differential difference amplifier (MIDDA), which allows operations of summation/subtraction and multiplication of input signals. It was designed and fabricated using I3T25 0.35 um ON (ON Semiconductor, Phoenix, AZ, USA) Semiconductor technology. The achieved results, which describe the experimentally verified behaviour of the fabricated device, are introduced, as well as the simple applications of MIDDA with electronically controllable parameters, useful for analogue signal processing. Moreover, the paper discusses an interesting example of nonlinear application to a double-sideband amplitude modulator, based on the utilization of multiplication and summation of particular signals. The laboratory experimental results which are achieved through the use of a fabricated prototype (both in time and frequency domain), confirm the workability of the concept.

Description

Citation

Applied Sciences-Basel. 2017, vol. 7, issue 1, p. 1-13.
http://www.mdpi.com/2076-3417/7/1/106

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO