Neural Network-Based Train Identification in Railway Switches and Crossings Using Accelerometer Data
dc.contributor.author | Krč, Rostislav | cs |
dc.contributor.author | Podroužek, Jan | cs |
dc.contributor.author | Floriánová, Martina | cs |
dc.contributor.author | Vukušič, Ivan | cs |
dc.contributor.author | Plášek, Otto | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 2020 | cs |
dc.date.issued | 2020-11-24 | cs |
dc.description.abstract | This paper aims to analyse possibilities of train type identification in railway switches and crossings (S&C) based on accelerometer data by using contemporary machine learning methods such as neural networks. That is a unique approach since trains have been only identified in a straight track. Accelerometer sensors placed around the S&C structure were the source of input data for subsequent models. Data from four S&C at different locations were considered and various neural network architectures evaluated. The research indicated the feasibility to identify trains in S&C using neural networks from accelerometer data. Models trained at one location are generally transferable to another location despite differences in geometrical parameters, substructure, and direction of passing trains. Other challenges include small dataset and speed variation of the trains that must be considered for accurate identification. Results are obtained using statistical bootstrapping and are presented in a form of confusion matrices. | en |
dc.format | text | cs |
dc.format.extent | 1-10 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | JOURNAL OF ADVANCED TRANSPORTATION. 2020, vol. 2020, issue 1, p. 1-10. | en |
dc.identifier.doi | 10.1155/2020/8841810 | cs |
dc.identifier.issn | 0197-6729 | cs |
dc.identifier.orcid | 0000-0001-6772-2575 | cs |
dc.identifier.orcid | 0000-0003-0493-5922 | cs |
dc.identifier.orcid | 0000-0002-8001-6349 | cs |
dc.identifier.orcid | 0000-0002-6713-7146 | cs |
dc.identifier.orcid | 0000-0003-2799-1521 | cs |
dc.identifier.other | 168007 | cs |
dc.identifier.scopus | 57205731839 | cs |
dc.identifier.scopus | 25121877100 | cs |
dc.identifier.scopus | 56301300500 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/196564 | |
dc.language.iso | en | cs |
dc.publisher | Hindawi | cs |
dc.relation.ispartof | JOURNAL OF ADVANCED TRANSPORTATION | cs |
dc.relation.uri | https://www.hindawi.com/journals/jat/2020/8841810/ | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0197-6729/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Neural Network-Based Train Identification | en |
dc.subject | Railway Switches and Crossings | en |
dc.subject | Accelerometer Data | en |
dc.title | Neural Network-Based Train Identification in Railway Switches and Crossings Using Accelerometer Data | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-168007 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:44:13 | en |
sync.item.modts | 2025.01.17 18:35:28 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav železničních konstrukcí a staveb | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav automatizace inženýrských úloh a informatiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 8841810.pdf
- Size:
- 2.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- 8841810.pdf