Neural Network-Based Train Identification in Railway Switches and Crossings Using Accelerometer Data

Loading...
Thumbnail Image

Authors

Krč, Rostislav
Podroužek, Jan
Floriánová, Martina
Vukušič, Ivan
Plášek, Otto

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Hindawi
Altmetrics

Abstract

This paper aims to analyse possibilities of train type identification in railway switches and crossings (S&C) based on accelerometer data by using contemporary machine learning methods such as neural networks. That is a unique approach since trains have been only identified in a straight track. Accelerometer sensors placed around the S&C structure were the source of input data for subsequent models. Data from four S&C at different locations were considered and various neural network architectures evaluated. The research indicated the feasibility to identify trains in S&C using neural networks from accelerometer data. Models trained at one location are generally transferable to another location despite differences in geometrical parameters, substructure, and direction of passing trains. Other challenges include small dataset and speed variation of the trains that must be considered for accurate identification. Results are obtained using statistical bootstrapping and are presented in a form of confusion matrices.
This paper aims to analyse possibilities of train type identification in railway switches and crossings (S&C) based on accelerometer data by using contemporary machine learning methods such as neural networks. That is a unique approach since trains have been only identified in a straight track. Accelerometer sensors placed around the S&C structure were the source of input data for subsequent models. Data from four S&C at different locations were considered and various neural network architectures evaluated. The research indicated the feasibility to identify trains in S&C using neural networks from accelerometer data. Models trained at one location are generally transferable to another location despite differences in geometrical parameters, substructure, and direction of passing trains. Other challenges include small dataset and speed variation of the trains that must be considered for accurate identification. Results are obtained using statistical bootstrapping and are presented in a form of confusion matrices.

Description

Citation

JOURNAL OF ADVANCED TRANSPORTATION. 2020, vol. 2020, issue 1, p. 1-10.
https://www.hindawi.com/journals/jat/2020/8841810/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO