High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures

dc.contributor.authorMontufar Jimenez, Edgar Benjamincs
dc.contributor.authorCasas Luna, Marianocs
dc.contributor.authorHorynová, Miroslavacs
dc.contributor.authorTkachenko, Serhiics
dc.contributor.authorFohlerová, Zdenkacs
dc.contributor.authorDíaz de la Torre, Sebastiancs
dc.contributor.authorDvořák, Karelcs
dc.contributor.authorČelko, Ladislavcs
dc.contributor.authorKaiser, Jozefcs
dc.coverage.issue70cs
dc.date.issued2018-02-09cs
dc.description.abstractIn this work alpha tricalcium phosphate (a-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 lm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of a-TCP areas rather than b-TCP areas, suggesting that a-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures.en
dc.formattextcs
dc.format.extent293-303cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationActa Biomaterialia. 2018, issue 70, p. 293-303.en
dc.identifier.doi10.1016/j.actbio.2018.02.002cs
dc.identifier.issn1742-7061cs
dc.identifier.orcid0000-0002-8122-4000cs
dc.identifier.orcid0000-0002-3449-1325cs
dc.identifier.orcid0000-0003-3856-789Xcs
dc.identifier.orcid0000-0001-9111-1520cs
dc.identifier.orcid0000-0002-1232-2301cs
dc.identifier.orcid0000-0003-2111-3357cs
dc.identifier.orcid0000-0003-0264-3483cs
dc.identifier.orcid0000-0002-7397-125Xcs
dc.identifier.other147198cs
dc.identifier.researcheridF-8040-2016cs
dc.identifier.researcheridAAB-5781-2021cs
dc.identifier.researcheridE-4346-2012cs
dc.identifier.researcheridG-7772-2018cs
dc.identifier.researcheridA-6893-2013cs
dc.identifier.researcheridK-2385-2014cs
dc.identifier.researcheridD-6870-2012cs
dc.identifier.researcheridD-6800-2012cs
dc.identifier.scopus23397943300cs
dc.identifier.scopus57053564300cs
dc.identifier.scopus49863286200cs
dc.identifier.scopus55223374100cs
dc.identifier.scopus54992801300cs
dc.identifier.scopus25621022900cs
dc.identifier.scopus7402184758cs
dc.identifier.urihttp://hdl.handle.net/11012/244135
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofActa Biomaterialiacs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1742706118300722cs
dc.rights(C) Elseviercs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1742-7061/cs
dc.subjectBiodegradable metalen
dc.subjectTricalcium phosphateen
dc.subjectSpark plasma sinteringen
dc.subjectMechanical propertiesen
dc.subjectDegradation testen
dc.titleHigh strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fracturesen
dc.title.alternativeVysoce pevné, biologicky odbouratelné a cytocompatibilní kompozity alfa trikalcium fosfát-železo pro časovou redukci fraktur kostícs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionsubmittedVersionen
sync.item.dbidVAV-147198en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:41:15en
sync.item.modts2025.01.17 18:34:07en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Chytré nanonástrojecs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé instrumentace a metody pro charakterizace materiálůcs
thesis.grantorVysoké učení technické v Brně. Fakulta stavební. Technologie hmot a dílců AdMaScs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2018ART02PREPRINTActa Bio HSB alpha TCPMonLunHor.pdf
Size:
534 KB
Format:
Adobe Portable Document Format
Description:
file 2018ART02PREPRINTActa Bio HSB alpha TCPMonLunHor.pdf