Pokročilé instrumentace a metody pro charakterizace materiálů

Browse

Recent Submissions

Now showing 1 - 5 of 127
  • Item
    Study of plasma activated water effect on heavy metal bioaccumulation by Cannabis sativa Using Laser-Induced Breakdown Spectroscopy
    (Elsevier, 2024-09-15) Čechová, Ludmila; Holub, Daniel; Šimoníková, Lucie; Modlitbová, Pavlína; Novotný, Karel; Pořízka, Pavel; Kozáková, Zdenka; Krčma, František; Kaiser, Jozef
    Contamination of the environment with toxic metals such as cadmium or lead is a worldwide issue. The accumulator of metals Cannabis sativa L. has potential to be utilized in phytoremediation, which is an environmentally friendly way of soil decontamination. Novel non-thermal plasma-based technologies may be a helpful tool in this process. Plasma activated water (PAW), prepared by contact of gaseous plasma with water, contains reactive oxygen and nitrogen species, which enhance the growth of plants. In this study, C. sativa was grown in a short-term toxicity test in a medium which consisted of plasma activated water prepared by dielectric barrier discharge with liquid electrode and different concentrations of cadmium or lead. Application of PAW on heavy metal contaminated C. sativa resulted in increased growth under Pb contamination as was determined by ecotoxicology tests. Furthermore, the PAW influence on the bioaccumulation of these metals as well as the influence on the nutrient composition of plants was studied primarily by applying Laser-induced breakdown spectroscopy (LIBS). The LIBS elemental maps show that C. sativa accumulates heavy metals mainly in the roots. The results present a new proof-of-concept in which PAW could be used to improve the growth of plants in heavy metal contaminated environment, while LIBS can be implemented to study the phytoremediation efficiency.
  • Item
    Fabrication of customized open-cell titanium foams by direct foaming for biomedical applications
    (ELSEVIER, 2024-11-01) Oliver Urrutia, Carolina; Casas Luna, Mariano; Koledová, Zuzana; Slámečka, Karel; Zikmund, Tomáš; Kaiser, Jozef; Čelko, Ladislav; Montufar Jimenez, Edgar Benjamin
    Titanium (Ti) foams offer a promising alternative for bone reconstruction and repair due to their high porosity and lower stiffness compared to solid metals, which improves in vivo osseointegration by reducing the stress shielding effect and allowing bone ingrowth. In this work, customized Ti foams were successfully fabricated for the first time at room temperature using a direct foaming method. Ti powder suspension with a water-soluble surfactant and environmentally friendly thickener was foamed by mechanical stirring. Then, 3D-printed moulds were utilized to achieve near-net shape foams, which were subsequently consolidated by sintering, thus avoiding the need for complex processing of molten Ti. The resulting Ti foams exhibited a cancellous-like open-cell structure, high porosity (> 80%), and a five times higher effective surface area than a 3D Ti mesh with a primitive cubic-based cell fabricated by additive manufacturing. In addition, the Ti foams exhibited similar mechanical properties to cancellous bone and facilitated the adhesion, proliferation, and maturation of human osteoblasts in vitro.
  • Item
    Apparent Young´s modulus of human cranial cancellous bone
    (Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2024-05-14) Votava, Tomáš; Marcián, Petr; Borák, Libor; Fuis, Vladimír; Zikmund, Tomáš; Kaiser, Jozef; Wolff, Jan
    This study investigates the biomechanical behavior of cancellous bone in the os occipitale through finite element modeling. Utilizing micro-computed tomography scans, 47 bone segments were analyzed, and their apparent Young's moduli of each segment were determined in three orthogonal directions. The results revealed strong directional dependencies of Young’s modulus on bone volume fractions. In contrast, nondirectional dependency exhibited a weaker correlation, indicating an orthotropic elasticity. The derived correlation equations offer an efficient means to describe cancellous bone in cranial biomechanical simulations, especially when a detailed trabecular representation is impractical.
  • Item
    A Quantum Chemistry Approach Based on the Analogy with -System in Polymers for a Rapid Estimation of the Resonance Wavelength of Nanoparticle Systems
    (MDPI, 2019-06-28) Salajková, Zita
    In this paper, the Variational Method based on the Hückel Theory is applied to NPs chain and aggregate systems in order to estimate the energy of the plasmon and, in turn, the resonance wavelength shift, which is caused by the interaction of adjacent NPs. This method is based on the analogies of NPs dipole interactions and the -system in molecules. Differently from the Hartree-Fock method that is a self-consistent model, in this approach, the input data that this method requires is the dimer energy shift with respect to single NPs. This enables us to acquire a simultaneous estimation of the wavefunctions of the NPs system as well as the expectation energy value of every kind of NPs system. The main advantage of this approach is the rapid response and ease of application to every kind of geometries and spacing from the linear chain to clusters, without the necessity of a time-consuming calculation. The results obtained with this model are closely aligned to related literature and open the way to further development of this methodology for investigating other properties of NPs systems.
  • Item
    Automatic marker-free estimation methods for the axis of rotation in sub-micron X-ray computed tomography
    (Elsevier, 2023-03-01) Zemek, Marek; Šalplachta, Jakub; Zikmund, Tomáš; Omote, Kazuhiko; Takeda, Yoshihiro; Oberta, Peter; Kaiser, Jozef
    Misalignment of the rotation axis causes severe artifacts in X-ray computed tomography. Calibration of this parameter is often insufficient for sub-micron resolution measurements and needs to be corrected during the post-processing. This correction can be accelerated by various automatic methods. These vary in mechanisms and performance, making them suitable for different use-cases. This work summarizes existing automatic methods for estimating the rotation axis in X-ray computed tomography, with a focus on sub-micron applications. Some of the methods are implemented and compared in the context of a laboratory sub-micron scanner to demonstrate practical considerations of this task.