Vztah mezi echogenitou černé substance a poruchami řeči a hlasu

Loading...
Thumbnail Image
Date
Authors
Adamkovičová, Lenka
ORCID
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstract
Transkraniálna sonografia je rýchle, jednoduché a neinvazívne vyšetrenie umožňujúce zachytiť úbytok čiernej mozgovej hmoty. Tento úbytok je spojený s rozvojom ochorení s Lewyho telieskami, a súvislosť medzi úbytkom čiernej hmoty a rozvojom demencie s Lewyho telieskami by umožnil presnejšiu diagnostiku ochorenia. Táto diplomová práca má teda za cieľ preskúmať úspešnosti automatizovanej klasifikácie osôb pomocou modelu strojového učenia, a to podľa určenej diagnózy a tiež podľa veľkosti nálezu z TCS vyšetrenia. Automatizovanou akustickou analýzou boli vypočítané akustické parametre, ktoré boli štatisticky spracované a následne použité na trénovanie modelu strojového učenia. V porovnaní binárnej klasifikácie určených scenárov bolo zistené, že model stratifikovaný podľa veľkosti TCS nálezu dosiahol nižšie úspešnosti než model rozdelený na zdravé kontroly a osoby s demenciou s Lewyho telieskami v skorom štádiu. Tiež nebola potvrdená korelácia medzi veľkosťou nálezu hyperechogenity a závažnosťou ochorenia DLB.
Transcranial sonography is a quick, simple and noninvasive examination method that allows to capture the loss of Substantia nigra in the brain. This loss is associated with the development of Lewy body disorders, and a confirmed correlation between Substantia nigra loss and development of dementia with Lewy bodies would allow for more accurate diagnosis of the disease. This thesis aims to investigate the accuracy of automated classification of individuals using a machine learning model, both according to their diagnosis of early DLB and also according to the size of Substantia nigra loss based on TCS examination. Automated acoustic analysis was applied to calculate speech and language parameters, those were statistically processed and then used to train a machine learning model. In a comparison of two binary classification problems it was found, that the model stratified by the size of Substantia nigra loss achieved lower accuracy than the model stratified by a diagnosis to healthy controls and persons with early-stage dementia with Lewy bodies. In addition, no correlation between SN hyperechogenicity and severity of DLB was confirmed.
Description
Citation
ADAMKOVIČOVÁ, L. Vztah mezi echogenitou černé substance a poruchami řeči a hlasu [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
sk
Study field
Zvuková produkce a nahrávání
Comittee
prof. Mgr. Pavel Rajmic, Ph.D. (předseda) doc. Ing. MgA. Mgr. Dan Dlouhý, Ph.D. (místopředseda) PhDr. Aleš Dvořák (člen) Dr. Ing. Libor Husník (člen) Ing. Daniel Kováč (člen) Ing. Václav Mach, Ph.D. (člen)
Date of acceptance
2024-06-05
Defence
Studentka prezentovala výsledky své práce a komise byla seznámena s posudky. Studentka obhájila diplomovou práci a odpověděla na otázky členů komise a oponenta. Otázky: Může souviset míra echogenity s pohlavím a věkem pacienta, příp. byly výsledky transkraniální sonografie očištěny o kovariáty stejně jako akustické parametry? Je možné nějak interpretovat výsledné hodnoty metrik popisujících predikci výstupů transkraniální sonografie?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO