Epitaxial Guidance of Adamantyl-Substituted Polythiophenes by Self-Assembled Monolayers

Loading...
Thumbnail Image

Authors

Farka, Dominik
Cigánek, Martin
Veselý, Dominik
Kalina, Lukáš
Krajčovič, Jozef

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

AMER CHEMICAL SOC
Altmetrics

Abstract

The anisotropic nature of charge transport through organic materials requires high control over the self-assembly of the organic materials. This is particularly so for conductive polymers, where transport occurs mainly along the polymers' backbone. Herein, we demonstrate the use of self-assembled monolayers (SAMs) to influence the self-assembly of poly(3-adamantylmethylthiophene). We employ two different SAMs, which interact with either the adamantyl- or the thiophene-functionality, respectively, and acquire distinct topologies as compared to the unmodified Au(111) surface. We compare these results with unmodified glass and mica (muscovite) surfaces, which are typically employed in the field of optoelectronics. We prove the usefulness and applicability of epitaxial effects and adamantyl substituents for organic electronics. This presents a viable way toward improved electronic performance for the field as a whole.
The anisotropic nature of charge transport through organic materials requires high control over the self-assembly of the organic materials. This is particularly so for conductive polymers, where transport occurs mainly along the polymers' backbone. Herein, we demonstrate the use of self-assembled monolayers (SAMs) to influence the self-assembly of poly(3-adamantylmethylthiophene). We employ two different SAMs, which interact with either the adamantyl- or the thiophene-functionality, respectively, and acquire distinct topologies as compared to the unmodified Au(111) surface. We compare these results with unmodified glass and mica (muscovite) surfaces, which are typically employed in the field of optoelectronics. We prove the usefulness and applicability of epitaxial effects and adamantyl substituents for organic electronics. This presents a viable way toward improved electronic performance for the field as a whole.

Description

Citation

ACS Omega. 2024, vol. 9, issue 37, p. 38733-38742.
https://pubs.acs.org/doi/full/10.1021/acsomega.4c04616

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO