Permanent Plasma Surface Functionalization of Internal Surface Areas

dc.contributor.authorHegemann, Dirkcs
dc.contributor.authorJanůšová, Martinacs
dc.contributor.authorNavascues, Paulacs
dc.contributor.authorZajíčková, Lenkacs
dc.contributor.authorGuex, Anne Géraldinecs
dc.coverage.issue8cs
dc.coverage.volume12cs
dc.date.accessioned2025-05-27T09:57:10Z
dc.date.available2025-05-27T09:57:10Z
dc.date.issued2025-04-01cs
dc.description.abstractSurface functionalization technologies of fibrous or porous materials are often considered relatively unstable with a shelf life of several weeks or months at most, evoked by heterogeneous treatment of their internal surface areas. Here, it is demonstrating that the fine balance of plasma etching, deposition, and oxidation involving different reactive species, strongly enhances penetration depth within complex structures. On this basis, capillary wicking is maintained over >10 years after plasma functionalization of a scaffold material used for biomedical engineering. Electrospun membranes of poly(epsilon-caprolactone) are coated with an oxygen-functional hydrocarbon layer, deposited in a competitive ablation and plasma polymerization process with CO2 and C2H4 as reactive gases. Chemical analysis immediately after coating, 9 months later, and after storing at ambient conditions for over 10 years, indicate a stable surface coating. Using defined geometries such as a cavity and an undercut, the underlying plasma interaction mechanisms are revealed, showing different synergies of energetic particles, depositing species with different surface reactivities, and oxidizing species. A concerted action of such species during plasma functionalization is key to enabling long-term wetting properties. This has a major implication for the surface functionalization of scaffolds, textiles, membranes, or foams used in diverse fields.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Materials Interfaces. 2025, vol. 12, issue 8, p. 1-10.en
dc.identifier.doi10.1002/admi.202400727cs
dc.identifier.issn2196-7350cs
dc.identifier.orcid0000-0002-6906-8906cs
dc.identifier.other197867cs
dc.identifier.researcheridE-3010-2012cs
dc.identifier.urihttps://hdl.handle.net/11012/251064
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofAdvanced Materials Interfacescs
dc.relation.urihttps://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202400727cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2196-7350/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectplasma etchingen
dc.subjectplasma polymer filmsen
dc.subjectscaffold materialsen
dc.subjectspecies penetrationen
dc.subjectwettabilityen
dc.titlePermanent Plasma Surface Functionalization of Internal Surface Areasen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197867en
sync.item.dbtypeVAVen
sync.item.insts2025.05.27 11:57:10en
sync.item.modts2025.05.27 11:33:38en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav teoretické a experimentální elektrotechnikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Plazmové technologie pro materiálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025Hegemann.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
file 2025Hegemann.pdf