Plazmové technologie pro materiály

Browse

Recent Submissions

Now showing 1 - 5 of 10
  • Item
    Self-consistent autocorrelation for finite-area bias correction in roughness measurement
    (IOP Publishing Ltd, 2024-06-01) Nečas, David
    Scan line levelling, a ubiquitous and often necessary step in AFM data processing, can cause a severe bias on measured roughness parameters such as mean square roughness or correlation length. Although bias estimates have been formulated, they aimed mainly at assessing the severity of the problem for individual measurements. Practical bias correction methods are still missing. This work exploits the observation that the bias of autocorrelation function (ACF) can be expressed in terms of the function itself, permitting a self-consistent formulation. From this two correction approaches are developed, both with the aim to obtain convenient formulae which can be easily applied in practice. The first modifies standard analytical models of ACF to incorporate, in expectation, the bias and thus actually match the data the models are used to fit. The second inverts the relation between true and estimated ACF to realise a model-free correction. Both are tested using simulated and experimental data and found effective, reducing the total error of roughness parameters several times in the typical cases.
  • Item
    Multifunctional graphene quantum dots: A therapeutic strategy for neurodegenerative diseases by regulating calcium influx, crossing the blood-brain barrier and inhibiting A-protein aggregation
    (Elsevier, 2024-02-01) Gomez Perez, Inmaculada Jennifer; Křížková, Petra; Dolečková, Anna; Cardo, Lucia; Wetzl, Cecília; Pizúrová, Naděžda; Prato, Maurizio; Medalová, Jiřina; Zajíčková, Lenka
    Multifunctional nanoparticles could be the hallmark for the treatment of neurodegenerative diseases. Dissociation of protein aggregates causing neuronal damage and transfer of specific drugs which can downregulate neuronal excitotoxicity by inhibiting glutamatergic N-Methyl-D-Aspartate-receptors (NMDA) and then reducing calcium influx are among the main factors to consider for proper therapy. Here, we present a multiplatform based on nitrogen-doped graphene quantum dots (NGQDs) with such functionalities. The NGQDs were functionalized with Memantine, the clinically used drug, via covalent and non-covalent coupling, and we confirmed that the pharmaceutical activity was not altered. Apart from that, using xCELLigence technology and flow cytometric analysis of ABC transporter function, we uncovered that the ABC transporters of the blood-brain barrier (BBB) do not affect the ability of NGQD to cross BBB. Surprisingly, this study found that NGQDs have an inhibitory effect on NMDA receptors, thus supporting the action of Memantine. Moreover, NGQDs and their derivatives demonstrated the potential to dissociate beta-amyloid aggregates while possessing features suitable for bioimaging in various cell lines.
  • Item
    Comparing efficiencies of polypropylene treatment by atmospheric pressure plasma jets
    (WILEY-V C H VERLAG GMBH, 2023-07-11) Polášková, Kateřina; Ozkan, Alp; Klíma, Miloš; Jeníková, Zdeňka; Buddhadasa, Madhuwanthi; Reniers, François; Zajíčková, Lenka
    Plasma treatment of polypropylene (PP) is a well-established method of improving its surface properties. However, the efficiencies of different plasma discharges are seldom compared. Herein, we discuss the differences in PP treated by three arc-based commercial plasma jets working in dry air, Plasmatreat rotating plasma jet (PT-RPJ), AFS PlasmaJet & REG; (AFS-PJ), and SurfaceTreat gliding arc jet (ST-GA), and by the low-temperature RF plasma slit jet (RF-PSJ) working in argon. The AFS-PJ has a significantly different reactive species composition dominated by nitrogen oxides. It induced higher thermal loads leading to surface damage. The other arc-based jets (PT-RPJ and ST-GA) created the PP surface with higher oxygen and nitrogen concentration than the low-temperature RF-PSJ. It induced a higher adhesion strength measured on PP-aluminum joints.
  • Item
    Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric
    (MDPI, 2023-03-28) Janů, Lucie; Dvořáková, Eva; Polášková, Kateřina; Janůšová, Martina; Ryšánek, Petr; Chlup, Zdeněk; Kruml, Tomáš; Galmiz, Oleksandr; Nečas, David; Zajíčková, Lenka
    Excellent adhesion of electrospun nanofiber (NF) to textile support is crucial for a broad range of their bioapplications, e.g., wound dressing development. We compared the effect of several low- and atmospheric pressure plasma modifications on the adhesion between two parts of composite-polycaprolactone (PCL) nanofibrous mat (functional part) and polypropylene (PP) spunbond fabric (support). The support fabrics were modified before electrospinning by low-pressure plasma oxygen treatment or amine plasma polymer thin film or treated by atmospheric pressure plasma slit jet (PSJ) in argon or argon/nitrogen. The adhesion was evaluated by tensile test and loop test adapted for thin NF mat measurement and the trends obtained by both tests largely agreed. Although all modifications improved the adhesion significantly (at least twice for PSJ treatments), low-pressure oxygen treatment showed to be the most effective as it strengthened adhesion by a factor of six. The adhesion improvement was ascribed to the synergic effect of high treatment homogeneity with the right ratio of surface functional groups and sufficient wettability. The low-pressure modified fabric also stayed long-term hydrophilic (ten months), even though surfaces usually return to a non-wettable state (hydrophobic recovery). In contrast to XPS, highly surface-sensitive water contact angle measurement proved suitable for monitoring subtle surface changes.
  • Item
    Electric field and higher harmonics of RF plasma slit jet measured by antennas and VI probes
    (IOP Publishing, 2024-05-29) Polášková, Kateřina; Drexler, Petr; Klíma, Miloš; Macháč, Jan; Nečas, David; Švanda, Milan; Zajíčková, Lenka
    The cold atmospheric plasma jets change their character when interacting with the different surfaces. Since such interaction is the primary area of plasma jet applications, it is essential to monitor the process. The non-linearity of the RF plasma slit jet (PSJ) was analyzed using the VI probes and a novel method, the non-intrusive antenna measurements. Regardless of the experimental setup and gas mixture (Ar, Ar/O2, Ar/N2), the PSJ frequency spectrum consisted of the following main features: dominant fundamental frequency peak, relatively strong odd harmonics, and significantly weaker even harmonics. The lowest degree of non-linearity was recorded for the Ar PSJ ignited against a grounded target. Admixing a molecular gas increased the discharge non-linearity. It was attributed to the enhancement of secondary electron emission from the dielectric surfaces. In addition to the non-linearity analysis, the antenna spectra were for the first time used to determine the semi-quantitative values of the PSJ-radiated electric field. The electric fields decreased by a factor of 2 after the admixing of nitrogen and oxygen molecular gases. Out of the studied targets, the highest electric fields were observed when plasma impinged on the grounded targets, followed by the floating target (2x lower) and the PSJ ignited in the open space configuration (4x lower than in the grounded target configuration).