Imaging of native early embryogenic tissue of Scots pine (Pinus sylvestris L.) by ESEM.
Loading...
Date
Authors
Hřib, Jiří
Vooková, Božena
Neděla, Vilém
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
De Gruyter Open Ltd
ORCID
Altmetrics
Abstract
Environmental scanning electron microscopy enables the investigation of uncoated pine early embryogenic tissue samples in situ. The samples were examined under low vacuum conditions (air pressure 550 Pa) at a temperature of around -18°C by the AQUASEM II noncommercial environmental scanning electron microscope. The native extracellular matrix surface network was imaged by the environmental scanning electron microscope and in dark field mode of the optical microscope too. The backscattered electron detector disclosed brightness loci in the cells of early embryogenic culture. This work shows images of native pine embryogenic tissues. The continuity of extracellular matrix with structural integrity of plant organism is discussed.
Environmental scanning electron microscopy enables the investigation of uncoated pine early embryogenic tissue samples in situ. The samples were examined under low vacuum conditions (air pressure 550 Pa) at a temperature of around -18°C by the AQUASEM II noncommercial environmental scanning electron microscope. The native extracellular matrix surface network was imaged by the environmental scanning electron microscope and in dark field mode of the optical microscope too. The backscattered electron detector disclosed brightness loci in the cells of early embryogenic culture. This work shows images of native pine embryogenic tissues. The continuity of extracellular matrix with structural integrity of plant organism is discussed.
Environmental scanning electron microscopy enables the investigation of uncoated pine early embryogenic tissue samples in situ. The samples were examined under low vacuum conditions (air pressure 550 Pa) at a temperature of around -18°C by the AQUASEM II noncommercial environmental scanning electron microscope. The native extracellular matrix surface network was imaged by the environmental scanning electron microscope and in dark field mode of the optical microscope too. The backscattered electron detector disclosed brightness loci in the cells of early embryogenic culture. This work shows images of native pine embryogenic tissues. The continuity of extracellular matrix with structural integrity of plant organism is discussed.
Description
Citation
Open Life Sciences. 2015, vol. 10, issue 1, p. 285-290.
http://www.degruyter.com/view/j/biol.2015.10.issue-1/biol-2015-0028/biol-2015-0028.xml?format=INT
http://www.degruyter.com/view/j/biol.2015.10.issue-1/biol-2015-0028/biol-2015-0028.xml?format=INT
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

