Ústav elektrotechnologie
Browse
Recent Submissions
Now showing 1 - 5 of 47
- ItemAssessing the Carbon Footprint of Viticultural Production in Central European Conditions(MDPI, 2024-07-31) Bača, Petr; Mašán, Vladimír; Vanýsek, Petr; Burg, Patrik; Binar, Tomáš; Burgová, Jana; Abrham, ZdeněkA number of factors will increasingly play a role in the sustainability of wine production in the coming period. The current situation suggests that the analysis of energy consumption and greenhouse gas (GHG) emissions will play a particularly important role. The so-called carbon footprint, expressed in CO2 equivalents, is used to express the sum of GHG emissions. This study presents an analysis of vine cultivation in a particular Central European region, with the main focus on quantifying the inputs, yield, fuel consumption, and GHG emissions. The emphasis was placed on conventional, integrated, and ecological production systems of growing, evaluated with the help of the developed AGROTEKIS version 5 software. A total of 30 wine-grower entities in the Morava wine-growing region, the subregion Velk & eacute; Pavlovice, in the Czech Republic weather climate, were included in the input data survey. By analyzing the aggregated values, the real savings in energy and curbing of CO2 emissions of vineyards could be observed, relating to individual work procedures with lower energy demand used in the vineyard treatment as well as the amounts and doses of agrochemicals used. The average values of the total impacts did not show any statistically significant differences between the conventional (971 +/- 78 kg CO2eqha-1year-1) and integrated production systems (930 +/- 62 kg CO2eqha-1year-1), whereas the values for the ecological production system were significantly higher (1479 +/- 40 kg CO2eqha-1year-1). The results show that growing vines under ecological production conditions generates a higher proportion of the carbon footprint than under conventional production conditions. Overall, the best results can be achieved in an integrated production system.
- ItemHeat Effects during the Operation of Lead-Acid Batteries(MDPI, 2024-04-27) Bača, Petr; Vanýsek, Petr; Langer, Martin; Zimáková, Jana; Chladil, LadislavThermal events in lead-acid batteries during their operation play an important role; they affect not only the reaction rate of ongoing electrochemical reactions, but also the rate of discharge and self-discharge, length of service life and, in critical cases, can even cause a fatal failure of the battery, known as “thermal runaway.” This contribution discusses the parameters affecting the thermal state of the lead-acid battery. It was found by calculations and measurements that there is a cooling component in the lead-acid battery system which is caused by the endothermic discharge reactions and electrolysis of water during charging, related to entropy change contribution. Thus, under certain circumstances, it is possible to lower the temperature of the lead-acid battery during its discharging. The Joule heat generated on the internal resistance of the cell due to current flow, the exothermic charging reaction, and above all, the gradual increase in polarization as the cell voltage increases during charging all contribute to the heating of the cell, overtaking the cooling effect. Of these three sources of thermal energy, Joule heating in polarization resistance contributes the most to the temperature rise in the lead-acid battery. Thus, the maximum voltage reached determines the slope of the temperature rise in the lead-acid battery cell, and by a suitably chosen limiting voltage, it is possible to limit the danger of the “thermal runaway” effect. The overall thermal conditions of the experimental cell are significantly affected by the ambient temperature of the external environment and the rate of heat transfer through the walls of the calorimeter. A series of experiments with direct temperature measurement of individual locations within a lead-acid battery uses a calorimeter made of expanded polystyrene to minimize external influences. A hitherto unpublished phenomenon is discussed whereby the temperature of the positive electrode was lower than that of the negative electrode throughout the discharge, while during charging, the order was reversed and the temperature of the positive electrode was higher than that of the negative electrode throughout the charge. The authors relate this phenomenon to the higher reaction entropy change of the active mass of the positive electrode than that of the negative electrode.
- ItemNovel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries(NATURE PORTFOLIO, 2024-04-22) Niščáková, V.; Almáši, Miroslav; Capková, Dominika; Kazda, Tomáš; Čech, Ondřej; Čudek, Pavel; Petruš, Ondrej; Volavka, D.; Orinaková, Renáta; Straková Fedorková, AndreaDue to the increasing demand for energy storage devices, the development of high-energy density batteries is very necessary. Lithium-sulfur (Li-S) batteries have gained wide interest due to their particularly high-energy density. However, even this type of battery still needs to be improved. Novel Cu(II)-based metal-organic framework STAM-1 was synthesized and applied as a composite cathode material as a sulfur host in the lithium-sulfur battery with the aim of regulating the redox kinetics of sulfur cathodes. Prepared STAM-1 was characterized by infrared spectroscopy at ambient temperature and after in-situ heating, elemental analysis, X-ray photoelectron spectroscopy and textural properties by nitrogen and carbon dioxide adsorption at - 196 and 0 degrees C, respectively. Results of the SEM showed that crystals of STAM-1 created a flake-like structure, the surface was uniform and porous enough for electrolyte and sulfur infiltration. Subsequently, STAM-1 was used as a sulfur carrier in the cathode construction of a Li-S battery. The charge/discharge measurements of the novel S/STAM-1/Super P/PVDF cathode demonstrated the initial discharge capacity of 452 mAh g-1 at 0.5 C and after 100 cycles of 430 mAh g-1, with Coulombic efficiency of 97% during the whole cycling procedure at 0.5 C. It was confirmed that novel Cu-based STAM-1 flakes could accelerate the conversion of sulfur species in the cathode material.
- ItemComparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy(MDPI, 2023-12-11) Šabacká, Pavla; Maxa, Jiří; Bayer, Robert; Binar, Tomáš; Bača, Petr; Dostalová, Petra; Mačák, Martin; Čudek, PavelThis paper presents mathematical-physics analyses in the field of the influence of inserted sensors on the supersonic flow behind the nozzle. It evaluates differences in the flow in the area of atmospheric pressure and low pressure on the boundary of continuum mechanics. To analyze the formation of detached and conical shock waves and their distinct characteristics in atmospheric pressure and low pressure on the boundary of continuum mechanics, we conduct comparative analyses using two types of inserted sensors: flat end and tip. These analyses were performed in two variants, considering pressure ratios of 10:1 both in front of and behind the nozzle. The first variant involved using atmospheric pressure in the chamber in front of the nozzle. The second type of analysis was conducted with a pressure of 10,000 Pa in front of the nozzle. While this represents a low pressure at the boundary of continuum mechanics, it remains above the critical limit of 113 Pa. This deliberate choice was made as it falls within the team's research focus on low-pressure regions. Although it is situated at the boundary of continuum mechanics, it is intentionally within a pressure range where the viscosity values are not yet dependent on pressure. In these variants, the nature of the flow was investigated concerning the ratio of inertial and viscous flow forces under atmospheric pressure conditions, and it was compared with flow conditions at low pressure. In the low-pressure scenario, the ratio of inertial and viscous flow forces led to a significant reduction in the value of inertial forces. The results showed an altered flow character, characterized by a reduced tendency for the formation of cross-oblique shockwaves within the nozzle itself and the emergence of shockwaves with increased thickness. This increased thickness is attributed to viscous forces inhibiting the thickening of the shockwave itself. This altered flow character may have implications, such as influencing temperature sensing with a tipped sensor. The shockwave area may form in a very confined space in front of the tip, potentially impacting the results. Additionally, due to reduced inertial forces, the cone shock wave's angle is a few degrees larger than theoretical predictions, and there is no tilting due to lower inertial forces. These analyses serve as the basis for upcoming experiments in the experimental chamber designed specifically for investigations in the given region of low pressures at the boundary of continuum mechanics. The objective, in combination with mathematical-physics analyses, is to determine changes within this region of the continuum mechanics boundary where inertial forces are markedly lower than in the atmosphere but remain under the influence of unreduced viscosity.
- ItemImpact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers(MDPI, 2023-05-18) Maxa, Jiří; Neděla, Vilém; Šabacká, Pavla; Binar, TomášThe article describes the combination of experimental measurements with mathematical–physics analyses in flow investigation in the chambers of the scintillator detector, which is a part of the environmental scanning electron microscope. The chambers are divided with apertures by small openings that keep the desirable pressure differences between three chambers: The specimen chamber, the differentially pumped intermediate chamber, and the scintillator chamber. There are conflicting demands on these apertures. On the one hand, the diameter of the apertures must be as big as possible so that they incur minimal losses of the passing secondary electrons. On the other hand, it is possible to magnify the apertures only to a certain extent so the rotary and turbomolecular vacuum pump can maintain the required operating pressures in separate chambers. The article describes the combination of experimental measurement using an absolute pressure sensor and mathematical physics analysis to map all the specifics of the emerging critical supersonic flow in apertures between the chambers. Based on the experiments and their tuned analyses, the most effective variant of combining the sizes of each aperture concerning different operating pressures in the detector is determined. The situation is made more difficult by the described fact that each aperture separates a different pressure gradient, so the gas flow through each aperture has its own characteristics with a different type of critical flow, and they influence each other, thereby influencing the final passage of secondary electrons detected by the scintillator and thus affecting the resulting displayed image.