Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia

dc.contributor.authorGao, Wanlics
dc.contributor.authorMichalička, Jancs
dc.contributor.authorPumera, Martincs
dc.coverage.issue46cs
dc.coverage.volume12cs
dc.date.accessioned2025-06-11T11:56:25Z
dc.date.available2025-06-11T11:56:25Z
dc.date.issued2024-11-26cs
dc.description.abstractNitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO2OR) and nitrite reduction reaction (NO2RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO2. The resulting TiO2-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO2OR, it exhibits a peak current density of 0.75 mA cm-2 at 1.53 V vs. RHE, while for NO2RR, it achieves a yield rate of 630.5 mu g h-1 cm-2 with a faradaic efficiency of 81.9% at -1.06 V vs. RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO2. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production.en
dc.formattextcs
dc.format.extent32458-32470cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Materials Chemistry A. 2024, vol. 12, issue 46, p. 32458-32470.en
dc.identifier.doi10.1039/d4ta06800acs
dc.identifier.issn2050-7496cs
dc.identifier.orcid0000-0001-7879-2253cs
dc.identifier.orcid0000-0001-6231-0061cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other197199cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/251923
dc.language.isoencs
dc.publisherROYAL SOC CHEMISTRYcs
dc.relation.ispartofJournal of Materials Chemistry Acs
dc.relation.urihttps://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta06800acs
dc.rightsCreative Commons Attribution 3.0 Unportedcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2050-7496/cs
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/cs
dc.subjectBioremediationen
dc.subjectCarbon electrodesen
dc.subjectElectrochemical oxidationen
dc.subjectElectrolysisen
dc.subjectNitrogen oxidesen
dc.subjectOxygen reduction reactionen
dc.subjectSurface chemistryen
dc.subjectTitanium dioxideen
dc.subjectTitanium nitrideen
dc.titleAtomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammoniaen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197199en
sync.item.dbtypeVAVen
sync.item.insts2025.06.11 13:56:25en
sync.item.modts2025.06.11 13:33:06en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d4ta06800a.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format
Description:
file d4ta06800a.pdf