Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia
dc.contributor.author | Gao, Wanli | cs |
dc.contributor.author | Michalička, Jan | cs |
dc.contributor.author | Pumera, Martin | cs |
dc.coverage.issue | 46 | cs |
dc.coverage.volume | 12 | cs |
dc.date.accessioned | 2025-06-11T11:56:25Z | |
dc.date.available | 2025-06-11T11:56:25Z | |
dc.date.issued | 2024-11-26 | cs |
dc.description.abstract | Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO2OR) and nitrite reduction reaction (NO2RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO2. The resulting TiO2-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO2OR, it exhibits a peak current density of 0.75 mA cm-2 at 1.53 V vs. RHE, while for NO2RR, it achieves a yield rate of 630.5 mu g h-1 cm-2 with a faradaic efficiency of 81.9% at -1.06 V vs. RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO2. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production. | en |
dc.format | text | cs |
dc.format.extent | 32458-32470 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Journal of Materials Chemistry A. 2024, vol. 12, issue 46, p. 32458-32470. | en |
dc.identifier.doi | 10.1039/d4ta06800a | cs |
dc.identifier.issn | 2050-7496 | cs |
dc.identifier.orcid | 0000-0001-7879-2253 | cs |
dc.identifier.orcid | 0000-0001-6231-0061 | cs |
dc.identifier.orcid | 0000-0001-5846-2951 | cs |
dc.identifier.other | 197199 | cs |
dc.identifier.researcherid | F-2724-2010 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/251923 | |
dc.language.iso | en | cs |
dc.publisher | ROYAL SOC CHEMISTRY | cs |
dc.relation.ispartof | Journal of Materials Chemistry A | cs |
dc.relation.uri | https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta06800a | cs |
dc.rights | Creative Commons Attribution 3.0 Unported | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2050-7496/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | cs |
dc.subject | Bioremediation | en |
dc.subject | Carbon electrodes | en |
dc.subject | Electrochemical oxidation | en |
dc.subject | Electrolysis | en |
dc.subject | Nitrogen oxides | en |
dc.subject | Oxygen reduction reaction | en |
dc.subject | Surface chemistry | en |
dc.subject | Titanium dioxide | en |
dc.subject | Titanium nitride | en |
dc.title | Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-197199 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.06.11 13:56:25 | en |
sync.item.modts | 2025.06.11 13:33:06 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1 | cs |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovace | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- d4ta06800a.pdf
- Size:
- 2.29 MB
- Format:
- Adobe Portable Document Format
- Description:
- file d4ta06800a.pdf