Stability Enhancements on Methylammonium Lead-Based Perovskite Nanoparticles: the Smart Use of Host Matrices

Loading...
Thumbnail Image

Authors

Jančík, Ján
Krajčovič, Jozef
Brüggemann, Oliver
Salinas, Yolanda

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-VCH
Altmetrics

Abstract

Despite the current advancements, yet improving the intrinsic structure and external environmental stability of hybrid metal halide perovskite nanomaterials is required for developing efficient perovskite-based devices. Up-to-date, a very attractive method is growing and/or embedding perovskite nanocrystals within organic polymeric matrices, or into porous inorganic and hybrid nano/micromaterials (e. g., metal-organic frameworks, mesoporous silica, zeolites, and others), favored through confinement effect within the pores. In this review, we highlighted the last two years of research progress on enhancing the stabilization of perovskite nanoparticles based on methylammonium cations. In the future generation of optoelectronic and photovoltaic devices along with other interesting applied fields, it is predicted that an effective way to trigger the widespread use of this type of perovskite nanocrystals may involve combining different functional host materials, acting as a smarter protection method for the guest nanocrystals.
Despite the current advancements, yet improving the intrinsic structure and external environmental stability of hybrid metal halide perovskite nanomaterials is required for developing efficient perovskite-based devices. Up-to-date, a very attractive method is growing and/or embedding perovskite nanocrystals within organic polymeric matrices, or into porous inorganic and hybrid nano/micromaterials (e. g., metal-organic frameworks, mesoporous silica, zeolites, and others), favored through confinement effect within the pores. In this review, we highlighted the last two years of research progress on enhancing the stabilization of perovskite nanoparticles based on methylammonium cations. In the future generation of optoelectronic and photovoltaic devices along with other interesting applied fields, it is predicted that an effective way to trigger the widespread use of this type of perovskite nanocrystals may involve combining different functional host materials, acting as a smarter protection method for the guest nanocrystals.

Description

Citation

Israel Journal of Chemistry. 2021, vol. 61, issue 1, p. 1-19.
https://onlinelibrary.wiley.com/doi/10.1002/ijch.202100060

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO