Effects of Micro-Scale Mobility and Beam Misalignment in On-Body mmWave Systems

Loading...
Thumbnail Image

Authors

Ali, Asad
Galinina, Olga
Hošek, Jiří
Andreev, Sergey

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE
Altmetrics

Abstract

Wearable devices positioned on a human body have challenges in millimeter-wave (mmWave) communication due to micro-scale mobility, such as subtle shakes and rotations. These movements can compromise the radio link performance. It may be problematic for high-rate immersive applications, where this can lead to substantial degradation in the user’s quality of experience. In this letter, we propose a framework to quantify the impact of micro-scale mobility and beam misalignment on the performance of on-body mmWave links. Our findings reveal that for varying levels of beam misalignment, it is possible to adjust the antenna half-power beamwidth to enhance the data rates.
Wearable devices positioned on a human body have challenges in millimeter-wave (mmWave) communication due to micro-scale mobility, such as subtle shakes and rotations. These movements can compromise the radio link performance. It may be problematic for high-rate immersive applications, where this can lead to substantial degradation in the user’s quality of experience. In this letter, we propose a framework to quantify the impact of micro-scale mobility and beam misalignment on the performance of on-body mmWave links. Our findings reveal that for varying levels of beam misalignment, it is possible to adjust the antenna half-power beamwidth to enhance the data rates.

Description

Citation

IEEE COMMUNICATIONS LETTERS. 2024, vol. 28, issue 3, p. 682-686.
https://ieeexplore.ieee.org/document/10379591

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO