Detekce typu a bodového ohodnocení kartiček ve hře Hobiti

Loading...
Thumbnail Image
Date
Authors
Hlinský, Martin
ORCID
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Cílem této práce je vytvořit detektor karet, který s využitím umělé generace datové sady dokáže natrénovat model, jenž umožňuje zjistit bodové ohodnocení karty a její typ. K samotnému trénování je využit model YOLOv8. Prvním krokem je nafocení karet, které se následně zpracovávají tak, aby neobsahovaly pozadí a byly zarovnány. Tyto předzpracované fotky karet se v kombinaci s obrázky z jiných datových sad spojí v generátoru, který karty náhodně rozmisťuje, otáčí a simuluje fotky reálných případů. Výstupem tohoto generátoru je v případě hry Hobiti ideálně zhruba 50 000 obrázků, avšak v rámci experimentů jsou porovnávány různé velikosti datasetu a předtrénovaných váh. Poslední generace natrénovaných detektorů byla validována na reálné datové sadě za účelem nezaujatého testování a nejpřesnější model trénovaný na čistě syntetických datasetech dosáhl přesnosti až 81,5 % podle metriky 50. Na finálním detektoru je pak možné implementovat například počítadlo bodů, jehož prototyp je v této práci rovněž popsán.
This thesis aims to create a card detector that can train a model that can detect the score of a card and its type using the synthetic generation of the dataset. The YOLOv8 model is used for training. The first step is to take pictures of the cards, which then go through a pre-processing stage so they do not contain background and are aligned. These pre-processed card images are combined with photos from other datasets in a generator that randomly translates, rotates, and otherwise simulates photos of possible card placements. This generator’s output is roughly 50 000 annotated images in the case of the Hobiti game, but different dataset sizes and pre-trained weights are compared in the experiments. The latest generation of trained detectors was validated on a real dataset for unbiased testing, and the most accurate model trained on purely synthetic datasets achieved precision up to 81.5 % according to the 50 metric. It is then possible to implement, for example, a point counter on the final detector, a prototype of which is also described in this paper.
Description
Citation
HLINSKÝ, M. Detekce typu a bodového ohodnocení kartiček ve hře Hobiti [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
cs
Study field
Informační technologie
Comittee
prof. Ing. Adam Herout, Ph.D. (předseda) RNDr. Marek Rychlý, Ph.D. (člen) Ing. Vojtěch Mrázek, Ph.D. (člen) doc. Ing. Martin Čadík, Ph.D. (člen) Ing. Ondřej Lengál, Ph.D. (člen)
Date of acceptance
2024-06-13
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO