Paramagnetic Nanoparticles as a Platform for FRET-Based Sarcosine Picomolar Detection
Loading...
Files
Date
Authors
Heger, Zbyněk
Cernei, Natalia Vladimirovna
Křížková, Soňa
Masařík, Michal
Kopel, Pavel
Hodek, Petr
Zítka, Ondřej
Adam, Vojtěch
Kizek, René
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
Altmetrics
Abstract
Herein, we describe an ultrasensitive specific biosensing system for detection of sarcosine as a potential biomarker of prostate carcinoma based on Forster resonance energy transfer (FRET). The FRET biosensor employs anti-sarcosine antibodies immobilized on paramagnetic nanoparticles surface for specific antigen binding. Successful binding of sarcosine leads to assembly of a sandwich construct composed of anti-sarcosine antibodies keeping the Forster distance (Ro) of FRET pair in required proximity. The detection is based on spectral overlap between gold-functionalized green fluorescent protein and antibodies@quantum dots bioconjugate (lex 400 nm). The saturation curve of sarcosine based on FRET efficiency (F604/F510 ratio) was tested within linear dynamic range from 5 to 50 nM with detection limit down to 50 pM. Assembled biosensor was then successfully employed for sarcosine quantification in prostatic cell lines (PC3, 22Rv1, PNT1A), and urinary samples of prostate adenocarcinoma patients.
Herein, we describe an ultrasensitive specific biosensing system for detection of sarcosine as a potential biomarker of prostate carcinoma based on Forster resonance energy transfer (FRET). The FRET biosensor employs anti-sarcosine antibodies immobilized on paramagnetic nanoparticles surface for specific antigen binding. Successful binding of sarcosine leads to assembly of a sandwich construct composed of anti-sarcosine antibodies keeping the Forster distance (Ro) of FRET pair in required proximity. The detection is based on spectral overlap between gold-functionalized green fluorescent protein and antibodies@quantum dots bioconjugate (lex 400 nm). The saturation curve of sarcosine based on FRET efficiency (F604/F510 ratio) was tested within linear dynamic range from 5 to 50 nM with detection limit down to 50 pM. Assembled biosensor was then successfully employed for sarcosine quantification in prostatic cell lines (PC3, 22Rv1, PNT1A), and urinary samples of prostate adenocarcinoma patients.
Herein, we describe an ultrasensitive specific biosensing system for detection of sarcosine as a potential biomarker of prostate carcinoma based on Forster resonance energy transfer (FRET). The FRET biosensor employs anti-sarcosine antibodies immobilized on paramagnetic nanoparticles surface for specific antigen binding. Successful binding of sarcosine leads to assembly of a sandwich construct composed of anti-sarcosine antibodies keeping the Forster distance (Ro) of FRET pair in required proximity. The detection is based on spectral overlap between gold-functionalized green fluorescent protein and antibodies@quantum dots bioconjugate (lex 400 nm). The saturation curve of sarcosine based on FRET efficiency (F604/F510 ratio) was tested within linear dynamic range from 5 to 50 nM with detection limit down to 50 pM. Assembled biosensor was then successfully employed for sarcosine quantification in prostatic cell lines (PC3, 22Rv1, PNT1A), and urinary samples of prostate adenocarcinoma patients.
Description
Keywords
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-3915-7270 