Cleaning of tungsten tips for subsequent use as cold field emitters or STM probes

Loading...
Thumbnail Image

Authors

Košelová, Zuzana
Horáková, Lenka
Burda, Daniel
Allaham, Mohammad Mahmoud Mohammad
Knápek, Alexandr
Fohlerová, Zdenka

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

FEI STU
Altmetrics

Abstract

This study investigates the crucial process of cleaning cold field emission electron emitters and scanning tunnel microscopy (STM) probes, particularly focusing on tungsten tips. The cleanliness of these tips is essential for maintaining optimal cathode properties, preventing impurities that can significantly affect the emission process. Various cleaning methods, including macroetching, ammonia cleaning, and hydrofluoric acid (HF) cleaning were explored and compared by scanning electron microscopy. The macroetching method, involving a mixture of hydrochloric acid, nitric acid, and hydrogen fluoride, proved to be too reactive, causing significant material removal and altering the tip's structure. Ammonia cleaning did not significantly improve or harm the samples. However, oxide islands appeared in some areas, suggesting the potential formation of ammonium tungsten oxide. HF cleaning, specifically at 20% and 50% concentrations, demonstrated effectiveness in removing tungsten oxides without damaging the tip. Pre-cleaning with water and ethanol proved beneficial for subsequent HF refinement. Results suggest that HF is the most suitable method for oxide removal but a rinse with water is essential for removing residual sodium hydroxide. To maintain optimal properties, it is crucial to apply a less reactive layer quickly or transfer the tips to a water/ethanol bath to prevent oxidation.
This study investigates the crucial process of cleaning cold field emission electron emitters and scanning tunnel microscopy (STM) probes, particularly focusing on tungsten tips. The cleanliness of these tips is essential for maintaining optimal cathode properties, preventing impurities that can significantly affect the emission process. Various cleaning methods, including macroetching, ammonia cleaning, and hydrofluoric acid (HF) cleaning were explored and compared by scanning electron microscopy. The macroetching method, involving a mixture of hydrochloric acid, nitric acid, and hydrogen fluoride, proved to be too reactive, causing significant material removal and altering the tip's structure. Ammonia cleaning did not significantly improve or harm the samples. However, oxide islands appeared in some areas, suggesting the potential formation of ammonium tungsten oxide. HF cleaning, specifically at 20% and 50% concentrations, demonstrated effectiveness in removing tungsten oxides without damaging the tip. Pre-cleaning with water and ethanol proved beneficial for subsequent HF refinement. Results suggest that HF is the most suitable method for oxide removal but a rinse with water is essential for removing residual sodium hydroxide. To maintain optimal properties, it is crucial to apply a less reactive layer quickly or transfer the tips to a water/ethanol bath to prevent oxidation.

Description

Citation

Journal of Electrical Engineering-Elektrotechnicky Casopis. 2024, vol. 75, issue 1, p. 41-46.
http://iris.elf.stuba.sk/JEEEC/data/pdf/1_124-06.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO