Aplikace posilovaného učení v řízení Smart Home
Loading...
Date
Authors
Biel, Gabriel
ORCID
Advisor
Referee
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Táto práca skúma, ako môže strojové učenie zlepšiť riadenie inteligentných domácností s dôrazom na optimalizáciu riadenia teploty a zvýšenie energetickej účinnosti. Konkrétne sa porovnávajú dva pokročilé algoritmy posilňovaného učenia, Deep Q-Learning (DQL) a Proximal Policy Optimization (PPO). Tieto modely sú testované v simulovanom prostredí, ktoré napodobňuje reálne podmienky, aby sa zhodnotila ich schopnosť prispôsobiť sa správaniam užívateľov a zmenám v prostredí. Ukázalo sa, že model PPO je obzvlášť účinný vďaka svojej stabilite a schopnosti predpovedať návrat obyvateľov. Tento výskum ponúka cenné poznatky o praktických aplikáciách AI technológií v inteligentných domácnostiach.
This thesis investigates how machine learning can improve smart home management by focusing on optimizing temperature control and boosting energy efficiency. Specifically, it examines and compares two sophisticated reinforcement learning algorithms, Deep Q-Learning (DQL) and Proximal Policy Optimization (PPO). These models are tested in a simulated environment that replicates real-world conditions to evaluate their effectiveness in adapting to user behaviors and environmental changes. The study finds that the PPO model is particularly effective due to its stability and ability to predict when occupants will return, thus maintaining a comfortable temperature more efficiently. This research offers valuable insights into the practical applications of AI technologies in smart homes.
This thesis investigates how machine learning can improve smart home management by focusing on optimizing temperature control and boosting energy efficiency. Specifically, it examines and compares two sophisticated reinforcement learning algorithms, Deep Q-Learning (DQL) and Proximal Policy Optimization (PPO). These models are tested in a simulated environment that replicates real-world conditions to evaluate their effectiveness in adapting to user behaviors and environmental changes. The study finds that the PPO model is particularly effective due to its stability and ability to predict when occupants will return, thus maintaining a comfortable temperature more efficiently. This research offers valuable insights into the practical applications of AI technologies in smart homes.
Description
Keywords
strojové učenie, inteligentné domácnosti, regulácia teploty, posilňované učenie, deep q-learning, dql, dqn, proximal policy optimization, ppo, prediktívne modely, machine learning, smart home, temperature control, reinforcement learning, deep q-learning, dql, dqn, proximal policy optimization, ppo, predictive models
Citation
BIEL, G. Aplikace posilovaného učení v řízení Smart Home [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Informační technologie
Comittee
doc. Ing. František Zbořil, Ph.D. (předseda)
Mgr. Kamil Malinka, Ph.D. (člen)
Ing. Miloš Musil, Ph.D. (člen)
Ing. Jiří Hynek, Ph.D. (člen)
Ing. David Bařina, Ph.D. (člen)
Date of acceptance
2024-06-10
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení