Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets

dc.contributor.authorShukla, Satishcs
dc.contributor.authorDubey, Nikitacs
dc.contributor.authorShukla, Rahulcs
dc.contributor.authorMezník, Ivancs
dc.coverage.issue9cs
dc.coverage.volume12cs
dc.date.issued2023-09-01cs
dc.description.abstractIn this paper, we prove a coincidence point result for a pair of mappings satisfying Edelstein-type contractive condition on fuzzy metric spaces. We describe the equilibrium of a simple demand-supply model of a dynamic market by the coincidence point of demand and supply functions. With the help of the coincidence point theorem in fuzzy metric spaces, it is showed that a dynamic market of a supply-sensitive nature (or demand-sensitive nature) always tends towards its equilibrium.en
dc.formattextcs
dc.format.extent1-14cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAxioms. 2023, vol. 12, issue 9, p. 1-14.en
dc.identifier.doi10.3390/axioms12090854cs
dc.identifier.issn2075-1680cs
dc.identifier.orcid0000-0003-4807-3260cs
dc.identifier.other184539cs
dc.identifier.urihttp://hdl.handle.net/11012/214446
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofAxiomscs
dc.relation.urihttps://www.mdpi.com/2075-1680/12/9/854cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2075-1680/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectEdelstein mappingen
dc.subjectfuzzy metric spaceen
dc.subjectcoincidence pointen
dc.subjectdynamic marketen
dc.subjectdemand and supply functionsen
dc.subjectsensitivity indexen
dc.subjectequilibrium pointen
dc.titleCoincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Marketsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-184539en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:43:32en
sync.item.modts2025.01.17 18:40:37en
thesis.grantorVysoké učení technické v Brně. Fakulta podnikatelská. Ústav informatikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
axioms1200854v2.pdf
Size:
430.26 KB
Format:
Adobe Portable Document Format
Description:
axioms1200854v2.pdf