Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets
Loading...
Date
Authors
Shukla, Satish
Dubey, Nikita
Shukla, Rahul
Mezník, Ivan
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
ORCID
Altmetrics
Abstract
In this paper, we prove a coincidence point result for a pair of mappings satisfying Edelstein-type contractive condition on fuzzy metric spaces. We describe the equilibrium of a simple demand-supply model of a dynamic market by the coincidence point of demand and supply functions. With the help of the coincidence point theorem in fuzzy metric spaces, it is showed that a dynamic market of a supply-sensitive nature (or demand-sensitive nature) always tends towards its equilibrium.
In this paper, we prove a coincidence point result for a pair of mappings satisfying Edelstein-type contractive condition on fuzzy metric spaces. We describe the equilibrium of a simple demand-supply model of a dynamic market by the coincidence point of demand and supply functions. With the help of the coincidence point theorem in fuzzy metric spaces, it is showed that a dynamic market of a supply-sensitive nature (or demand-sensitive nature) always tends towards its equilibrium.
In this paper, we prove a coincidence point result for a pair of mappings satisfying Edelstein-type contractive condition on fuzzy metric spaces. We describe the equilibrium of a simple demand-supply model of a dynamic market by the coincidence point of demand and supply functions. With the help of the coincidence point theorem in fuzzy metric spaces, it is showed that a dynamic market of a supply-sensitive nature (or demand-sensitive nature) always tends towards its equilibrium.
Description
Keywords
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0003-4807-3260 