High-entropy alloys: Electrochemical Nanoarchitectonics toward high-performance Water splitting

dc.contributor.authorIffelsberger, Christiancs
dc.contributor.authorNovčić, Katarinacs
dc.contributor.authorKolíbalová, Evacs
dc.contributor.authorMatysik, Frank-Michaelcs
dc.contributor.authorPumera, Martincs
dc.coverage.issueAprilcs
dc.coverage.volume173cs
dc.date.accessioned2025-05-27T09:57:19Z
dc.date.available2025-05-27T09:57:19Z
dc.date.issued2025-04-01cs
dc.description.abstractHigh-entropy alloys (HEAs) offer unprecedented catalytic properties over single-composition nanoparticles or single atom engineered materials. Traditionally, the Hume-Rothery rule suggests that only size-and-structure similar elements can be mixed in conventional alloying, which limits the possible combinations of alloying elements. Here we propose an electrochemical approach as an innovative and alternative synthetic method for preparation of HEAs. Upon an electric arch by applying voltage drop of about 2 MV/m with high current densities and using ultra-thin Pt wire in glass, whose movement, in the aqueous solution containing the salt of the elements to be incorporated to the HEAs, is controlled by the scanning electrochemical microscope (SECM), the HEAs, consisting of doped silica nanobeads are produced. The composition of such HEAs depends on the materials and solution used in their preparation and thus it contains Pt, Si, Al, Ca, K, Cl, Mn, Zn, Na, N, Mo, and S. This new approach is compatible with ambient air and aqueous solution processes and is not limited by material selection, presenting a significant advancement in the synthesis of functional nanomaterials. The findings underline the potential of these high-entropy nanostructured materials in advancing the efficiency of industrial processes, particularly in the realm of green hydrogen production through water splitting. This simple, lowvoltage, room temperature process is suitable for fabrication of HEAs of various composition and has the applicability to wide spectra of catalytic reactions.en
dc.formattextcs
dc.format.extent1-7cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationELECTROCHEMISTRY COMMUNICATIONS. 2025, vol. 173, issue April, p. 1-7.en
dc.identifier.doi10.1016/j.elecom.2025.107879cs
dc.identifier.issn1873-1902cs
dc.identifier.orcid0000-0003-4217-0043cs
dc.identifier.orcid0000-0002-5572-1847cs
dc.identifier.orcid0000-0002-8548-8185cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other197818cs
dc.identifier.researcheridE-8664-2019cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttps://hdl.handle.net/11012/251069
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofELECTROCHEMISTRY COMMUNICATIONScs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1388248125000189cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1873-1902/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectScanning electrochemical microscopyen
dc.subjectHydrogen evolution reactionen
dc.subjectNanocompositeen
dc.subjectHigh entropy alloysen
dc.titleHigh-entropy alloys: Electrochemical Nanoarchitectonics toward high-performance Water splittingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197818en
sync.item.dbtypeVAVen
sync.item.insts2025.05.27 11:57:19en
sync.item.modts2025.05.27 11:33:35en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S1388248125000189main.pdf
Size:
3.86 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S1388248125000189main.pdf