Real-time RSET prediction across three types of geometries and simulation training dataset: A comparative study of machine learning models
dc.contributor.author | Uhlík, Ondřej | cs |
dc.contributor.author | Okřinová, Petra | cs |
dc.contributor.author | Tokarevskikh, Artem | cs |
dc.contributor.author | Apeltauer, Tomáš | cs |
dc.contributor.author | Apeltauer, Jiří | cs |
dc.coverage.issue | 100461 | cs |
dc.coverage.volume | 18 | cs |
dc.date.issued | 2024-05-24 | cs |
dc.description.abstract | Agent-based evacuation models provide useful data of the evacuation process, but they are not primarily designed for use during an emergency. The paper aims to test predicting RSET using a surrogate ML model trained on a simulation dataset with 60 samples. A total of 9 machine learning algorithms were tested on 3 simple geometries: bottleneck, stairway and walkway. A set of 7 spatial features was used to train the surrogate models. The results showed a relatively good ability of Artificial Neural Network to learn in scenarios involving bottlenecks and stairways, with an R2: 0.99 on the testing dataset. In the walkway scenario, all models experienced a significant drop in performance, with Gradient Boost performing the best (R2: 0.92). The paper demonstrated ability to generalize effectively in bottleneck-type tasks with training on a relatively small dataset containing spatial parameters obtainable in real-time from camera systems. | en |
dc.format | text | cs |
dc.format.extent | 13 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Developments in the Built Environment. 2024, vol. 18, issue 100461, 13 p. | en |
dc.identifier.doi | 10.1016/j.dibe.2024.100461 | cs |
dc.identifier.issn | 2666-1659 | cs |
dc.identifier.orcid | 0000-0001-9047-4784 | cs |
dc.identifier.orcid | 0000-0003-0300-8967 | cs |
dc.identifier.orcid | 0000-0003-3186-2175 | cs |
dc.identifier.orcid | 0000-0002-9791-4655 | cs |
dc.identifier.other | 188671 | cs |
dc.identifier.researcherid | AAG-2349-2021 | cs |
dc.identifier.researcherid | Q-2414-2015 | cs |
dc.identifier.researcherid | P-9965-2015 | cs |
dc.identifier.scopus | 57197712362 | cs |
dc.identifier.scopus | 35067734400 | cs |
dc.identifier.scopus | 56566688300 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/249353 | |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartof | Developments in the Built Environment | cs |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S266616592400142X?via%3Dihub | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2666-1659/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Evacuation modeling | en |
dc.subject | Machine learning | en |
dc.subject | Required safe egress time | en |
dc.subject | Agent-based models | en |
dc.title | Real-time RSET prediction across three types of geometries and simulation training dataset: A comparative study of machine learning models | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-188671 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.03.06 11:53:36 | en |
sync.item.modts | 2025.03.05 12:32:06 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav pozemních komunikací | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta stavební. Ústav automatizace inženýrských úloh a informatiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S266616592400142Xmain.pdf
- Size:
- 5.81 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 1s2.0S266616592400142Xmain.pdf