Real-time RSET prediction across three types of geometries and simulation training dataset: A comparative study of machine learning models

Loading...
Thumbnail Image

Authors

Uhlík, Ondřej
Okřinová, Petra
Tokarevskikh, Artem
Apeltauer, Tomáš
Apeltauer, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Agent-based evacuation models provide useful data of the evacuation process, but they are not primarily designed for use during an emergency. The paper aims to test predicting RSET using a surrogate ML model trained on a simulation dataset with 60 samples. A total of 9 machine learning algorithms were tested on 3 simple geometries: bottleneck, stairway and walkway. A set of 7 spatial features was used to train the surrogate models. The results showed a relatively good ability of Artificial Neural Network to learn in scenarios involving bottlenecks and stairways, with an R2: 0.99 on the testing dataset. In the walkway scenario, all models experienced a significant drop in performance, with Gradient Boost performing the best (R2: 0.92). The paper demonstrated ability to generalize effectively in bottleneck-type tasks with training on a relatively small dataset containing spatial parameters obtainable in real-time from camera systems.
Agent-based evacuation models provide useful data of the evacuation process, but they are not primarily designed for use during an emergency. The paper aims to test predicting RSET using a surrogate ML model trained on a simulation dataset with 60 samples. A total of 9 machine learning algorithms were tested on 3 simple geometries: bottleneck, stairway and walkway. A set of 7 spatial features was used to train the surrogate models. The results showed a relatively good ability of Artificial Neural Network to learn in scenarios involving bottlenecks and stairways, with an R2: 0.99 on the testing dataset. In the walkway scenario, all models experienced a significant drop in performance, with Gradient Boost performing the best (R2: 0.92). The paper demonstrated ability to generalize effectively in bottleneck-type tasks with training on a relatively small dataset containing spatial parameters obtainable in real-time from camera systems.

Description

Citation

Developments in the Built Environment. 2024, vol. 18, issue 100461, 13 p.
https://www.sciencedirect.com/science/article/pii/S266616592400142X?via%3Dihub

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO