Machine-Learning-Aided Massive Hybrid Analog and Digital MIMO DOA Estimation for Future Wireless Networks

Loading...
Thumbnail Image

Authors

Zhao, X.
Shi, B.
Bai, J.
Shu, F.
Chen, Y.
Zhan, X.
Cai, W.
Huang, M.
Jie, Q.
Li, Y.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Due to a high spatial angle resolution and low circuit cost of massive hybrid analog and digital (HAD) multiple-input multiple-output (MIMO), it is viewed as a valuable green communication technology for future wireless networks. Integrating the massive HAD-MIMO with direction of arrival (DOA) will provide an even ultra-high performance of DOA measurement, which can the fully-digital (FD) MIMO. However, phase ambiguity is a challenge issue for a massive HAD-MIMO DOA estimation. In this paper, we consider three parts: detection, estimation, and Cramer-Rao lower bound (CRLB). First, a multi-layer-neural-network (MLNN) detector is proposed to infer the existence of emitters. Then, a two-layer HAD (TLHAD) MIMO structure is proposed to estimate the DOA and eliminate phase ambiguity using only one time block. Simulation results show that the proposed MLNN detector is much better than both the existing generalized likelihood ratio test (GRLT) and the ratio of maximum eigen-value (Max-EV) to minimum eigen-value (R-MaxEV-MinEV) in terms of detection probability. Additionally, the proposed TLHAD structure can achieve the corresponding CRLB.

Description

Citation

Radioengineering. 2023 vol. 32, č. 4, s. 634-642. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2023/23_04_0634_0642.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO