Design and Fabrication of 3D Electrostatic Energy Harvester

dc.contributor.authorJanicek, Vladimir
dc.contributor.authorHusak, Miroslav
dc.contributor.authorJakovenko, Jiri
dc.contributor.authorFormanek, Jan
dc.coverage.issue1cs
dc.coverage.volume21cs
dc.date.accessioned2015-01-22T09:23:58Z
dc.date.available2015-01-22T09:23:58Z
dc.date.issued2012-04cs
dc.description.abstractThis paper discusses the design of an electrostatic generator, power supply component of the self-powered microsystem, which is able to provide enough energy to power smart sensor chains or if necessary also other electronic monitoring devices. One of the requirements for this analyzer is the mobility, so designing the power supply expects use of an alternative way of getting electricity to power the device, rather than rely on periodic supply of external energy in the form of charging batteries, etc. In this case the most suitable method to use is so-called energy harvesting – a way how to gather energy. This uses the principle of non-electric conversion of energy into electrical energy in the form of converters. The present study describes the topology design of such structures of electrostatic generator. Structure is designed and modeled as a three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure, while the minimum area of the chip, the ability to work in all 3 axes of coordinate system and ability to be tuned to reach desired parameters proves promising directions of possible further development of this issue. The work includes simulation of electro-mechanical and electrical properties of the structure, description of its behavior in different operating modes and phases of activity. Simulation results were compared with measured values of the produced prototype chip. These results can suggest possible modifications to the proposed structure for further optimization and application environment adaptation.en
dc.formattextcs
dc.format.extent231-238cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2012, vol. 21, č. 1, s. 231-238. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/37035
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2012/12_01_0231_0238.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectMEMSen
dc.subjectenergy harvestingen
dc.subjectelectrostaticen
dc.subjectgeneratoren
dc.titleDesign and Fabrication of 3D Electrostatic Energy Harvesteren
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12_01_0231_0238.pdf
Size:
13.77 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections