Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space
dc.contributor.author | Sigmund, Milan | cs |
dc.contributor.author | Hrabina, Martin | cs |
dc.coverage.issue | 4 | cs |
dc.coverage.volume | 27 | cs |
dc.date.issued | 2021-08-23 | cs |
dc.description.abstract | This paper presents an efficient approach to automatic gunshot detection based on a combination of two feature sets: adapted standard sound features and hand-crafted novel features. The standard features are mel-frequency cepstral coefficients adapted for gunshot recognition in terms of uniform gamma-tone filters linearly spaced over the whole frequency range from 0 kHz to 16 kHz. The novel features were derived in the time domain from individual significant points of the raw waveform after amplitude normalization. Experiments were performed using single and ensemble neural networks to verify the effectiveness of the novel features for supplementing the standard features. In binary classification, the developed approach achieved an accuracy of 95.02 % in gunshot detection. | en |
dc.description.abstract | Tento článek představuje účinný postup na automatickou detekci výstřelů založený na kombinaci dvou sad příznaků: upravených standardních zvukových příznaků a ručně vytvořených nových příznaků. Standardními příznaky jsou mel-frekvenční kepstrální koeficienty přizpůsobené pro rozpoznání výstřelů pomocí jednotkových gama-tónových filtrů lineárně rozmístěných v celém frekvenčním rozsahu od 0 kHz do 16 kHz. Nové příznaky byly odvozeny v časové oblasti z jednotlivých významných bodů průběhu po normalizaci amplitudy. Experimenty byly prováděny s použitím jednoduchých a souborových neuronových sítí k ověření účinnosti nových příznaků pro doplnění standardních příznaků. V binární klasifikaci vyvinutý postup dosáhl přesnosti 95,02 % při detekci výstřelu. | cs |
dc.format | text | cs |
dc.format.extent | 62-68 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Elektronika Ir Elektrotechnika. 2021, vol. 27, issue 4, p. 62-68. | en |
dc.identifier.doi | 10.5755/j02.eie.28877 | cs |
dc.identifier.issn | 1392-1215 | cs |
dc.identifier.orcid | 0000-0003-3973-3626 | cs |
dc.identifier.orcid | 0000-0003-2070-7006 | cs |
dc.identifier.other | 173150 | cs |
dc.identifier.researcherid | AAM-3483-2020 | cs |
dc.identifier.scopus | 7004163486 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/203054 | |
dc.language.iso | en | cs |
dc.publisher | Kaunas University of Technology | cs |
dc.relation.ispartof | Elektronika Ir Elektrotechnika | cs |
dc.relation.uri | https://eejournal.ktu.lt/index.php/elt/article/view/28877 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1392-1215/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Acoustic signal processing | en |
dc.subject | gunshot detection | en |
dc.subject | neural networks | en |
dc.subject | parameter estimation | en |
dc.subject | Zpracování akustického signálu | |
dc.subject | detekce výstřelů | |
dc.subject | neuronové sítě | |
dc.subject | odhad parametrů | |
dc.title | Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space | en |
dc.title.alternative | Efektivní soubor příznaků vyvinutý pro akustickou detekci výstřelů v otevřeném prostoru | cs |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-173150 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:41:42 | en |
sync.item.modts | 2025.01.17 16:51:38 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektroniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 28877Article Text10137011020210823.pdf
- Size:
- 1.12 MB
- Format:
- Adobe Portable Document Format
- Description:
- 28877Article Text10137011020210823.pdf