Efficient Feature Set Developed for Acoustic Gunshot Detection in Open Space

Loading...
Thumbnail Image

Authors

Sigmund, Milan
Hrabina, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Kaunas University of Technology
Altmetrics

Abstract

This paper presents an efficient approach to automatic gunshot detection based on a combination of two feature sets: adapted standard sound features and hand-crafted novel features. The standard features are mel-frequency cepstral coefficients adapted for gunshot recognition in terms of uniform gamma-tone filters linearly spaced over the whole frequency range from 0 kHz to 16 kHz. The novel features were derived in the time domain from individual significant points of the raw waveform after amplitude normalization. Experiments were performed using single and ensemble neural networks to verify the effectiveness of the novel features for supplementing the standard features. In binary classification, the developed approach achieved an accuracy of 95.02 % in gunshot detection.
This paper presents an efficient approach to automatic gunshot detection based on a combination of two feature sets: adapted standard sound features and hand-crafted novel features. The standard features are mel-frequency cepstral coefficients adapted for gunshot recognition in terms of uniform gamma-tone filters linearly spaced over the whole frequency range from 0 kHz to 16 kHz. The novel features were derived in the time domain from individual significant points of the raw waveform after amplitude normalization. Experiments were performed using single and ensemble neural networks to verify the effectiveness of the novel features for supplementing the standard features. In binary classification, the developed approach achieved an accuracy of 95.02 % in gunshot detection.

Description

Citation

Elektronika Ir Elektrotechnika. 2021, vol. 27, issue 4, p. 62-68.
https://eejournal.ktu.lt/index.php/elt/article/view/28877

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO