Umělá inteligence pro hraní her

Loading...
Thumbnail Image

Date

Authors

Bayer, Václav

Mark

C

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Práce se zabývá metodami umělé inteligence aplikovanými pro hraní strategických her, ve kterých probíhá veškerá interakce v reálném čase (tzv. real-time strategic - RTS). V práci se zabývám zejména metodu strojového učení Q-learning založenou na zpětnovazebním učení a Markovovu rozhodovacím procesu. Praktická část práce je implementována pro hraní hry StarCraft: Brood War.Mnou navržené řešení, implementované v rámci pravidel soutěže SSCAIT, se učí sestavit optimální konstrukční pořadí budov dle hracího stylu oponenta. Analýza a vyhodnocení systému jsou provedeny srovnáním s ostatními účastníky soutěže a rovněž na základě sady odehraných her a porovnání počátečního chování s výsledným chováním natrénovaným právě na této sadě.
The focus of this work is the use of artificial intelligence methods for a playing of real-time strategic (RTS) games, where all interactions of players are performed in real time (in parallel). The thesis deals mainly with the use of machine learning method Q-learning, which is based on reinforcement learning and Markov decision process. The practice part of this work is implemented for StarCraft: Brood War game.A proposed solution learns to make up an optimal order of buildings construction in respect to a playing style (strategy) of the opponent(s). The solution is proposed within the rules of the SSCAIT tournament. Analysis and evaluation of the proposed system are based on a comparison with other participants of the competition as well as a comparison of the system behavior before and after the playing of a set of the games.

Description

Citation

BAYER, V. Umělá inteligence pro hraní her [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2017.

Document type

Document version

Date of access to the full text

Language of document

cs

Study field

Informační technologie

Comittee

doc. Ing. František Zbořil, CSc. (předseda) doc. Ing. Lukáš Burget, Ph.D. (místopředseda) doc. RNDr. Dana Hliněná, Ph.D. (člen) doc. Ing. Petr Matoušek, Ph.D., M.A. (člen) Ing. Marcela Zachariášová, Ph.D. (člen)

Date of acceptance

2017-06-14

Defence

Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm " C ". Otázky u obhajoby: Vysvětlete jakým způsobem motivují odměňovací (reward) funkce agenty k dosažení vítězství ve hře, když navržené odměňovací funkce v podstatě jen hodnotí dodržení jednoduchých pravidel stavby budov. Diskutujte, které další součásti hry StarCraft jsou dobrými adepty na využití zpětnovazebného učení a pro které části se tento způsob automatizace nehodí.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO