Optimalizace diferenciálních systémů se zpožděním užitím přímé metody Lyapunova

Abstract

Dizertační práce se zabývá procesy, které jsou řízeny systémy zpožděných diferenciálních rovnic $$x'(t) =f(t,x_t,u),\,\,\,\, t\ge t_{0}$$ kde $t_0 \in \mathbb{R}$, funkce $f$ je definována v jistém podprostoru množiny $[t_0,\infty)\times {C}_{\tau}^{m}\times {\mathbb{R}}^r$, $m,r \in \mathbb{N}$, ${C}_{\tau}^{m}=C([-\tau,0],{\mathbb{R}}^{m})$, $\tau>0$, $x_t(\theta):=x(t+\theta)$, $\theta\in[-\tau,0]$, $x\colon [t_0-\tau,\infty)\to \mathbb{R}^{m}$. Za předpokladu $f(t,\theta_m^*,\theta_r)=\theta_m$, kde ${\theta}_m^*\in {C}_{\tau}^{m}$ je nulová vektorová funkce, $\theta_r$ a $\theta_m$ jsou $r$ a $m$-dimenzionální nulové vektory, je říd\'{i}cí funkce $u=u(t,x_t)$, $u\colon[t_0,\infty)\times {C}_{\tau}^{m}\to \mathbb{R}^{r}$, $u(t,{\theta}_m^*)=\theta_r$ určena tak, že nulové řešení $x(t)=\theta_m$, $t\ge t_{0}-\tau$ systému je asymptoticky stabilní a pro libovolné řešení $x=x(t)$ integrál $$\int _{t_{0}}^{\infty}\omega \left(t,x_t,u(t,x_t)\right)\diff t,$$ kde $\omega$ je pozitivně definitní funkcionál, existuje a nabývá své minimální hodnoty v daném smyslu. Pro řešení tohoto problému byla Malkinova metoda pro obyčejné diferenciální systémy rozšířena na zpožděné funkcionální diferenciální rovnice a byla použita druhá metoda Lyapunova. Výsledky jsou ilustrovány příklady a aplikovány na některé třídy zpožděných lineárních diferenciálních rovnic.
The present thesis deals with processes controlled by systems of delayed differential equations $$x'(t) =f(t,x_t,u),\,\,\,\, t\ge t_{0}$$ where $t_0 \in \mathbb{R}$, $f$ is defined on a subspace of $[t_0,\infty)\times {C}_{\tau}^{m}\times {\mathbb{R}}^r$, $m,r \in \mathbb{N}$, ${C}_{\tau}^{m}=C([-\tau,0],{\mathbb{R}}^{m})$, $\tau>0$, $x_t(\theta):=x(t+\theta)$, $\theta\in[-\tau,0]$, $x\colon [t_0-\tau,\infty)\to \mathbb{R}^{m}$. Under the assumption $f(t,\theta_m^*,\theta_r)=\theta_m$, where ${\theta}_m^*\in {C}_{\tau}^{m}$ is a zero vector-function, $\theta_r$ and $\theta_m$ are $r$ and $m$-dimensional zero vectors, a control function $u=u(t,x_t)$, $u\colon[t_0,\infty)\times {C}_{\tau}^{m}\to \mathbb{R}^{r}$, $u(t,{\theta}_m^*)=\theta_r$ is determined such that the zero solution $x(t)=\theta_m$, $t\ge t_{0}-\tau$ of the system is asymptotically stable and, for an arbitrary solution $x=x(t)$, the integral $$\int _{t_{0}}^{\infty}\omega \left(t,x_t,u(t,x_t)\right)\diff t,$$ where $\omega$ is a positive-definite functional, exists and attains its minimum value in a given sense. To solve this problem, Malkin's approach to ordinary differential systems is extended to delayed functional differential equations and Lyapunov's second method is applied. The results are illustrated by examples and applied to some classes of delayed linear differential equations.

Description

Citation

DEMCHENKO, H. Optimalizace diferenciálních systémů se zpožděním užitím přímé metody Lyapunova [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2018.

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Matematika v elektroinženýrství

Comittee

prof. RNDr. Jan Chvalina, DrSc. (předseda) prof. Ing. Pavel Jura, CSc. (člen) prof. RNDr. Miroslava Růžičková, CSc. - oponent (člen) doc. RNDr. Zdeněk Šmarda, CSc. (člen) doc. Andriy Shatyrko, CSc. - oponent (člen) doc. RNDr. Jaromír Baštinec, CSc. (člen) doc. RNDr. Jaroslav Beránek, CSc. (člen) doc. RNDr. Jiří Moučka, Ph.D. (člen)

Date of acceptance

2018-11-01

Defence

Disertační práce je věnována výzkumu optimalizačních metod pro systémy diferenciálních rovnic se zpožděním. Doktorandka dosáhla zajímavých původních výsledků - mimo jiné zobecnila klasický Malkinův výsledek. Všechny výsledky jsou ilustrovány množstvím vhodných příkladů. Práce, jak vyplývá z posudků, je velmi kvalitní.

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO