Optimization method for short circuit current reduction in extensive meshed LV network
Loading...
Date
2023-05-10
Authors
Topolánek, David
Krčál, Vít
Foltýn, Ladislav
Praks, Pavel
Vysocký, Jan
Praksová, Renata
Prettico, Giuseppe
Fulli, Gianluca
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Altmetrics
Abstract
This paper focuses on the analysis of suitable optimization methods applied to large meshed low-voltage networks. The introduced methods aim to minimize the SC-current contribution by simultaneously fulfilling well-defined operational constraints. The high number of binary variables (134) used in the worst case to determine the possible network configurations generates 1040 possible solutions. For this reason, the paper focuses only on methods capable of reducing the necessary steady-state calculations to a tractable size. Depending on the case under study, the deterministic method turns to be faster than the other ones at the price of reaching only a local minimum. In contrast, if a longer computation time is tolerated, then evolutionary algorithms succeed in finding the global optimum.
This paper focuses on the analysis of suitable optimization methods applied to large meshed low-voltage networks. The introduced methods aim to minimize the SC-current contribution by simultaneously fulfilling well-defined operational constraints. The high number of binary variables (134) used in the worst case to determine the possible network configurations generates 1040 possible solutions. For this reason, the paper focuses only on methods capable of reducing the necessary steady-state calculations to a tractable size. Depending on the case under study, the deterministic method turns to be faster than the other ones at the price of reaching only a local minimum. In contrast, if a longer computation time is tolerated, then evolutionary algorithms succeed in finding the global optimum.
This paper focuses on the analysis of suitable optimization methods applied to large meshed low-voltage networks. The introduced methods aim to minimize the SC-current contribution by simultaneously fulfilling well-defined operational constraints. The high number of binary variables (134) used in the worst case to determine the possible network configurations generates 1040 possible solutions. For this reason, the paper focuses only on methods capable of reducing the necessary steady-state calculations to a tractable size. Depending on the case under study, the deterministic method turns to be faster than the other ones at the price of reaching only a local minimum. In contrast, if a longer computation time is tolerated, then evolutionary algorithms succeed in finding the global optimum.
Description
Citation
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS. 2023, vol. 152, issue 1, p. 1-10.
https://www.sciencedirect.com/science/article/pii/S0142061523002600?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0142061523002600?via%3Dihub
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

0000-0001-9754-6867