Využitie Diffusion Modelov v Oblasti Deepfakes
Loading...
Date
Authors
Trúchly, Dominik
ORCID
Advisor
Referee
Mark
B
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Deepfake je typ syntetického média vytvoreného pomocou sofistikovaných algoritmov strojového učenia, najmä hlbokých neurónových sietí. Ako príklad možno uviesť generatívne adverzné neurónové siete (GAN), ktoré sú schopné generovať obrázky, ktoré sú pre bežných jednotlivcov takmer nemožné odlíšiť od skutočnej reality. V dôsledku toho boli vyvinuté algoritmy detekcie hlbokých falošných správ, ktoré riešia tento rastúci problém. Tieto algoritmy využívajú pokročilé techniky strojového učenia a analyzujú rôzne funkcie v rámci obrázkov a videí, aby identifikovali nezrovnalosti alebo anomálie svedčiace o manipulácii. Táto práca skúma aplikáciu difúznych modelov, bežne používaných v digitálnom spracovaní obrazu na zvýšenie kvality obrazu znížením šumu a rozmazania, pre posilňovanie realizmu deepfakes. Využitím týchto modelov testujeme ich efekt na odhaľovanie deepfakes obrázkov pomocou deepfake detektorov.
A deepfake is a type of synthetic media created through sophisticated machine learning algorithms, particularly deep neural networks. As an example Generative adversarial neural networks (GANs), that are capable of generating images that are almost impossible for ordinary individuals to differentiate from genuine reality. Consequently, deepfake detection algorithms have been developed to address this growing concern. Leveraging advanced machine learning techniques, these algorithms analyze various features within images and videos to identify inconsistencies or anomalies indicative of manipulation. This thesis investigates the application of diffusion models, commonly utilized in digital image processing to enhance image quality by reducing noise and blurring, in bolstering the realism of deepfakes. By using these models, we test their effect on detecting deepfakes images using deepfake detectors.
A deepfake is a type of synthetic media created through sophisticated machine learning algorithms, particularly deep neural networks. As an example Generative adversarial neural networks (GANs), that are capable of generating images that are almost impossible for ordinary individuals to differentiate from genuine reality. Consequently, deepfake detection algorithms have been developed to address this growing concern. Leveraging advanced machine learning techniques, these algorithms analyze various features within images and videos to identify inconsistencies or anomalies indicative of manipulation. This thesis investigates the application of diffusion models, commonly utilized in digital image processing to enhance image quality by reducing noise and blurring, in bolstering the realism of deepfakes. By using these models, we test their effect on detecting deepfakes images using deepfake detectors.
Description
Citation
TRÚCHLY, D. Využitie Diffusion Modelov v Oblasti Deepfakes [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Informační technologie
Comittee
doc. Dr. Ing. Otto Fučík (předseda)
Mgr. Kamil Malinka, Ph.D. (člen)
Ing. Vojtěch Mrázek, Ph.D. (člen)
Ing. Libor Polčák, Ph.D. (člen)
Ing. David Bařina, Ph.D. (člen)
Date of acceptance
2024-06-14
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm B.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení