Laptop touchpad palm detection with AI/ML
Loading...
Date
Authors
Menzyński, Mark Alexander
ORCID
Advisor
Referee
Mark
D
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Situace ohledně detekci a odmítnutí dlaně na laptopech je méně než ideální. Většina výzkumů se zabývá odmítnutím dotyků na dotykových obrazovkách, a na laptopy probíhá téměř žádný. Patrně nějaký uzavřený výzkům probíhá uvnitř výrobců laptopů, ale i přes to je technologie pozadu. Tato práce prozkoumává několik metod plytkého a hlubokého strojového učení, a výsledná přesnost byla zjištěna jako více než dostačující. Také implementuje aplikaci v reálném čase na demonstraci modelu.
The situation about palm rejection for laptops is less than ideal. Most research focuses on touchscreens, and there is minimal research on touchpads. Some research is possibly done privately in laptop manufacturer companies, but the technology is lacking behind regardless. This thesis explores several shallow and deep machine learning models and finds their accuracy to be very much sufficient. In addition, a real-time proof of concept is implemented to demonstrate the model's capabilities.
The situation about palm rejection for laptops is less than ideal. Most research focuses on touchscreens, and there is minimal research on touchpads. Some research is possibly done privately in laptop manufacturer companies, but the technology is lacking behind regardless. This thesis explores several shallow and deep machine learning models and finds their accuracy to be very much sufficient. In addition, a real-time proof of concept is implemented to demonstrate the model's capabilities.
Description
Keywords
Citation
MENZYŃSKI, M. Laptop touchpad palm detection with AI/ML [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2021.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Informační technologie
Comittee
doc. Ing. František Zbořil, Ph.D. (předseda)
doc. RNDr. Pavel Smrž, Ph.D. (místopředseda)
doc. Ing. Jiří Jaroš, Ph.D. (člen)
doc. Ing. Petr Matoušek, Ph.D., M.A. (člen)
Ing. Filip Orság, Ph.D. (člen)
Date of acceptance
2021-08-23
Defence
Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm " D ". Otázky u obhajoby: Have you done any comparison between the classical techniques and the machine learning ones? It seems you faced an imbalanced dataset problem in your work. How did you overcome this problem? Could you specify how did you solve the classification problem. Was it binary or multi-class classification? Komise, například: Jedná se jen o rozpoznání přiložené dlaně?
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení