Nanoarchitectonics of Triboelectric Nanogenerator for Conversion of Abundant Mechanical Energy to Green Hydrogen

dc.contributor.authorGhosh, Kalyancs
dc.contributor.authorIffelsberger, Christiancs
dc.contributor.authorKonečný, Martincs
dc.contributor.authorVyskočil, Jancs
dc.contributor.authorMichalička, Jancs
dc.contributor.authorPumera, Martincs
dc.coverage.issue11cs
dc.coverage.volume13cs
dc.date.issued2023-03-01cs
dc.description.abstractIn the present world, the high energy demand rapidly depletes existing fossil fuel reserves, urging the necessity to harvest energy from clean and renewable resources. In this study, the use of a triboelectric nanogenerator (TENG) is shown beyond the conventional practice of use in self-powered electronics, to the production of green hydrogen from renewable mechanical energy. For the first time the use of a magnetic covalent organic framework composite as positive triboelectric material for a contact-separation mode TENG (CS-TENG) in which MXene incorporated polydimethylsiloxane (PDMS) film serves as negative triboelectric material, is demonstrated. A facile way of incorporating micropatterns on the surface of PDMS/MXene film is shown utilizing the advantages of 3D printing technology. The CS-TENG harvests energy from simple mechanical actions such as human handclapping and toe-tapping. The energy from such low-scale mechanical actions is applied for water electrolysis. Scanning electrochemical microscopy is employed to confirm the evolution of hydrogen and oxygen by the harvested electrical energy from mechanical actions. This research is expected to pave the way for producing green hydrogen anywhere, by utilizing the mechanical energy from nature such as raindrops, wind, and the movement of vehicles.en
dc.formattextcs
dc.format.extent17cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Energy Materials. 2023, vol. 13, issue 11, 17 p.en
dc.identifier.doi10.1002/aenm.202203476cs
dc.identifier.issn1614-6840cs
dc.identifier.orcid0000-0001-6840-6590cs
dc.identifier.orcid0000-0003-4217-0043cs
dc.identifier.orcid0000-0002-3628-3343cs
dc.identifier.orcid0000-0001-6231-0061cs
dc.identifier.orcid0000-0001-5846-2951cs
dc.identifier.other183978cs
dc.identifier.researcheridE-8664-2019cs
dc.identifier.researcheridB-1494-2019cs
dc.identifier.researcheridF-2724-2010cs
dc.identifier.urihttp://hdl.handle.net/11012/244310
dc.language.isoencs
dc.publisherWiley-VCHcs
dc.relation.ispartofAdvanced Energy Materialscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/aenm.202203476cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1614-6840/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectgreen hydrogenen
dc.subjectmagnetic COFsen
dc.subjectmechanical energy conversionen
dc.subjectMXeneen
dc.subjectrenewable energyen
dc.subjecttriboelectric nanogeneratorsen
dc.titleNanoarchitectonics of Triboelectric Nanogenerator for Conversion of Abundant Mechanical Energy to Green Hydrogenen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-183978en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:48:23en
sync.item.modts2025.01.17 18:39:41en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023Ghosh.pdf
Size:
7.24 MB
Format:
Adobe Portable Document Format
Description:
file 2023Ghosh.pdf