Microfluidics chips fabrication techniques comparison

dc.contributor.authorLiu, Xiaochengcs
dc.contributor.authorSun, Antaocs
dc.contributor.authorBrodský, Jancs
dc.contributor.authorGablech, Imrichcs
dc.contributor.authorLednický, Tomášcs
dc.contributor.authorVopařilová, Petracs
dc.contributor.authorZítka, Ondřejcs
dc.contributor.authorZeng, Wencs
dc.contributor.authorNeužil, Pavelcs
dc.coverage.issue1cs
dc.coverage.volume14cs
dc.date.accessioned2025-02-18T11:36:11Z
dc.date.available2025-02-18T11:36:11Z
dc.date.issued2024-11-20cs
dc.description.abstractThis study investigates various microfluidic chip fabrication techniques, highlighting their applicability and limitations in the context of urgent diagnostic needs showcased by the COVID-19 pandemic. Through a detailed examination of methods such as computer numerical control milling of a polymethyl methacrylate, soft lithography for polydimethylsiloxane-based devices, xurography for glass-glass chips, and micromachining-based silicon-glass chips, we analyze each technique's strengths and trade-offs. Hence, we discuss the fabrication complexity and chip thermal properties, such as heating and cooling rates, which are essential features of chip utilization for a polymerase chain reaction. Our comparative analysis reveals critical insights into material challenges, design flexibility, and cost-efficiency, aiming to guide the development of robust and reliable microfluidic devices for healthcare and research. This work underscores the importance of selecting appropriate fabrication methods to optimize device functionality, durability, and production efficiency.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationScientific Reports. 2024, vol. 14, issue 1, p. 1-13.en
dc.identifier.doi10.1038/s41598-024-80332-2cs
dc.identifier.issn2045-2322cs
dc.identifier.orcid0000-0002-5656-3158cs
dc.identifier.orcid0000-0003-4218-1287cs
dc.identifier.orcid0000-0003-0564-1862cs
dc.identifier.orcid0000-0001-7607-5058cs
dc.identifier.other193659cs
dc.identifier.researcheridGYJ-6288-2022cs
dc.identifier.researcheridH-7835-2016cs
dc.identifier.researcheridE11072012cs
dc.identifier.scopus57212587388cs
dc.identifier.scopus55091127400cs
dc.identifier.scopus14012648400cs
dc.identifier.urihttps://hdl.handle.net/11012/250052
dc.language.isoencs
dc.publisherNATURE PORTFOLIOcs
dc.relation.ispartofScientific Reportscs
dc.relation.urihttps://www.nature.com/articles/s41598-024-80332-2cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2045-2322/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectMicrofluidicsen
dc.subjectFabrication techniquesen
dc.subjectThermal propertiesen
dc.titleMicrofluidics chips fabrication techniques comparisonen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-193659en
sync.item.dbtypeVAVen
sync.item.insts2025.02.18 12:36:11en
sync.item.modts2025.02.12 14:32:03en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav mikroelektronikycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598024803322.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description:
file s41598024803322.pdf