Electrical characterization of hydrothermally synthesized manganese dioxide nanowires with regard to NO2 adsorption/desorption thermodynamics

Loading...
Thumbnail Image

Authors

Smísitel, Petr
Šimůnková, Helena
Chmela, Ondřej
Claros Vargas, Martha Carmiňa
Vallejos Vargas, Stella
Hubálek, Jaromír

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Single nanowires (NWs) are promising structures to improve sensitivity and selectivity of metal-oxide (MOX) gas sensors. Self-made MnO2 nanowires were hydrothermally synthesized and electrically characterized in different ambient. The nanowires were approximately 4-10 µm long and about 100 nm in diameter. The nanowires were suspended in water and deposited on two parallel gold electrodes having separation distance of 4 µm. Single nanowires were aligned perpendicularly across the gold electrodes by dielectrophoresis (DEP) technique. The number of the NWs was determined by scanning electron microscopy. The conductivity was measured in synthetic air, nitrogen, and in NO2 ambient. The tests consisted in measuring resistivity of the NWs in relation to temperature of the bottom-placed heater under the chip. The temperature went from room temperature up to 300°C. The resistivity changes were observed accounting for oxygen reduction on the NWs surface as the electrons were moving from the NWs to the oxygen. The resistivity was explored at a constant current arrangement test. Based on resistivity changes, electrical properties, such as activation energy and a type of semiconductor (p-type in case of MnO2), were evaluated. Mott-Schottky analysis was applied to estimate acceptor concentration, as well as NWs permittivity.
Single nanowires (NWs) are promising structures to improve sensitivity and selectivity of metal-oxide (MOX) gas sensors. Self-made MnO2 nanowires were hydrothermally synthesized and electrically characterized in different ambient. The nanowires were approximately 4-10 µm long and about 100 nm in diameter. The nanowires were suspended in water and deposited on two parallel gold electrodes having separation distance of 4 µm. Single nanowires were aligned perpendicularly across the gold electrodes by dielectrophoresis (DEP) technique. The number of the NWs was determined by scanning electron microscopy. The conductivity was measured in synthetic air, nitrogen, and in NO2 ambient. The tests consisted in measuring resistivity of the NWs in relation to temperature of the bottom-placed heater under the chip. The temperature went from room temperature up to 300°C. The resistivity changes were observed accounting for oxygen reduction on the NWs surface as the electrons were moving from the NWs to the oxygen. The resistivity was explored at a constant current arrangement test. Based on resistivity changes, electrical properties, such as activation energy and a type of semiconductor (p-type in case of MnO2), were evaluated. Mott-Schottky analysis was applied to estimate acceptor concentration, as well as NWs permittivity.

Description

Citation

Engineering Proceedings. 2023, vol. 48, issue 1, p. 1-6.
https://www.mdpi.com/2673-4591/48/1/35

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO