Anisotropic Conductivity of Rat Head Phantom and its Influence on Electroencephalogram Source Localization

dc.contributor.authorLáčík, Jaroslavcs
dc.contributor.authorKoudelka, Vlastimilcs
dc.contributor.authorVejmola, Čestmírcs
dc.contributor.authorKuřátko, Davidcs
dc.contributor.authorVaněk, Jiřícs
dc.contributor.authorWójcik, Daniel Krzysztofcs
dc.contributor.authorPáleníček, Tomášcs
dc.contributor.authorRaida, Zbyněkcs
dc.coverage.issue1cs
dc.coverage.volume10cs
dc.date.accessioned2022-05-31T10:54:28Z
dc.date.available2022-05-31T10:54:28Z
dc.date.issued2022-01-20cs
dc.description.abstractIn this paper we deal with a simplified anisotropic rat head phantom development and the investigation of the influence of the anisotropic white matter on electroencephalogram source localization. The proposed phantom is based on the cubic cross cell composition combined with agar mixture to set desired electrical conductivity anisotropic ratio. For the fabrication of the phantom, the 3D printed technology is exploited. Starting from a real rat brain, we proposed a simplified brain model incorporating the actual dimensions, shape and conductivity parameters of both grey and white matter containing simultaneously relevant deep-brain electrical signal sources. Five testing dipoles were located in the areas corresponding to the active brain regions. A single dipole localization error was calculated by comparing an inverse solution with a dipole position obtained from a computer tomography image. Neglecting anisotropy had a rather weak effect on localization error of a single testing dipole in our model. The reliability map was computed and interpreted in terms of spatial similarity between distributed inverse solutions involving isotropic and anisotropic forward models. We found spatially specific error increases located close to the electrodes and in the vicinity of anisotropic compartment. Hence, areas to be most sensitive to neglecting anisotropy in our model were identified.en
dc.formattextcs
dc.format.extent9877-9888cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationIEEE Access. 2022, vol. 10, issue 1, p. 9877-9888.en
dc.identifier.doi10.1109/ACCESS.2022.3143952cs
dc.identifier.issn2169-3536cs
dc.identifier.other177469cs
dc.identifier.urihttp://hdl.handle.net/11012/204597
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofIEEE Accesscs
dc.relation.urihttps://ieeexplore.ieee.org/document/9684466cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2169-3536/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAnisotropic magnetoresistanceen
dc.subjectBrain modelingen
dc.subjectConductivityen
dc.subjectLocation awarenessen
dc.subjectPhantomsen
dc.subjectRatsen
dc.subjectWhite matteren
dc.titleAnisotropic Conductivity of Rat Head Phantom and its Influence on Electroencephalogram Source Localizationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-177469en
sync.item.dbtypeVAVen
sync.item.insts2023.01.25 16:53:13en
sync.item.modts2023.01.25 16:14:13en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektronikycs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav elektrotechnologiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lacik_2022.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format
Description:
Lacik_2022.pdf